6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 2.1

Slide2.1.1

Search plays akey role in many parts of Al. These algorithms provide the conceptual backbone of 6.034 Artificial Intelligence

almost every approach to the systematic exploration of aternatives.

We will start with some background, terminology and basic implementation strategies and then
cover four classes of search agorithms, which differ along two dimensions: First, isthe difference
between uninformed (also known as blind) search and then informed (also known as heuristic)

searches. Informed searches have access to task-specific information that can be used to make the ' Baf:kground
search process more efficient. The other difference is between any path searches and optimal * Uninformed vs Informed
searches. Optimal searches are looking for the best possible path while any-path searches will just = Any Path vs Optimal Path

settle for finding some solution.

Trees and Graphs

Bis parentof C
root Cis child of B
Alis ancestor of C
Cis descendant of A

Tree

Terminal
(leaf)

Link
(eclge)

e g

Slide2.1.3

A graph is also a set of nodes connected by links but where loops are alowed and a node can have
multiple parents. We have two kinds of graphs to deal with: directed graphs, where the links have Tree

direction (akin to one-way streets).

* Big idea: Search allows exploring altematives

* Implementation and Perfarmance

s of

Slide2.1.2

The search methods we will be dealing with are defined on trees and graphs, so we need to fix on
some terminology for these structures:

. A treeismade up of nodes and links (circles and lines) connected so that there are no loops
(cycles). Nodes are sometimes referred to as vertices and links as edges (thisis more common in
talking about graphs).

. Atree hasaroot node (where the tree "starts"). Every node except the root has asingle
parent (akadirect ancestor). More generally, an ancestor node is anode that can be reached by
repeatedly going to a parent node. Each node (except the terminal (akaleaf) nodes) has one or
more children (akadirect descendants). More generally, adescendant node is anode that can
be reached by repeatedly going to a child node.

Trees and Graphs

Bis parent of C
root C s child of B
Ais ancestorof C
Cis descendant of A

Terminal
(leaf)

Directed
Graph

(one-vray streets)

wespges

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Trees and Graphs Slide2.1.4

Bis parentof C
_— Cis child of B
Alis ancestorof C
Cis descendant of A

Tree

Terminal
(leaf)

Directed Undirected
Graph Graph

(one-way streets) (two-way streets)

e f

And, undirected graphs where the links go both ways. Y ou can think of an undirected graph as
shorthand for a graph with directed links going each way between connected nodes.

Slide2.1.5

Graphs are everywhere; for example, think about road networks or airline routes or computer
networks. In all of these cases we might be interested in finding a path through the graph that
satisfies some property. It may be that any path will do or we may be interested in a path having
the fewest "hops' or aleast cost path assuming the hops are not all equivalent, etc.

Examples of Graphs

Airline Routes

s

Examples of Graphs Slide2.1.6

Airline Routes

Planning actions S ol ﬂ
{graph of possible states n _ n
of the world) 7] [6] B
PutGon A ‘
PutCon A
B
m B B

sz of

However, graphs can also be much more abstract. Think of the graph defined as follows: the nodes
denote descriptions of a state of the world, e.g., which blocks are on top of what in ablocks scene,
and where the links represent actions that change from one state to the other.

A path through such a graph (from a start node to agoal node) isa"plan of action” to achieve
some desired goal state from some known starting state. It is this type of graph that is of more
general interest in Al.

Slide2.1.7

One general approach to problem solving in Al isto reduce the problem to be solved to one of
searching a graph. To use this approach, we must specify what are the states, the actions and the
goal test.

A state is supposed to be complete, that is, to represent all (and preferably only) the relevant
aspects of the problem to be solved. So, for example, when we are planning the cheapest round-the-
world flight plan, we don't need to know the address of the airports; knowing the identity of the
airport is enough. The address will be important, however, when planning how to get from the
hotel to the airport. Note that, in general, to plan an air route we need to know the airport, not just
the city, since some cities have multiple airports.

We are assuming that the actions are deter ministic, that is, we know exactly the state after the
action is performed. We also assume that the actions are discr ete, so we don't have to represent
what happens while the action is happening. For example, we assume that a flight gets usto the
scheduled destination and that what happens during the flight does not matter (at least when

« Whatare the states? (All relevant aspects of the problem)

« Whatare the actions (operators)? (Deterministic and discrete)

= Whatis the goal test? (Conditions for success)

planning the route).

Problem Solving Paradigm

- Arrangemerit of parts (o plan an assembly)

- Positions of frucks (to plan package distribution)
+ City (fo plan a trip)

+ Setof facts (e.g. to prove geometry theorem)

+ Assemble tio parts

+ Move atruck to a new position

+ Flyto a new cily

+ Apply a theorem to derive new fact

« Al paris in place

+ All packages deliversd
+ Reached destination city
+ Derved goal fact

wespigee

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Note that we've indicated that (in general) we need atest for the goal, not just one specific goal state. So, for example, we might be interested in any city in Germany rather than
specifically Frankfurt. Or, when proving atheorem, all we care is about knowing one fact in our current data base of facts. Any final set of factsthat contains the desired fact isa

proof.

In principle, we could also have multiple starting states, for example, if we have some uncertainty about the starting state. But, for now, we are not addressing issues of uncertainty

either in the starting state or in the result of the actions.

Graph Search as Tree Search

- Trees are directed graphs without cycles and with nodes having <=1 parent

« e can turn graph search problems into tree search problems by
+ replacing undirected links by 2 directed links

« avoiding loops in path {or keeping frack of visited nodes glabalky

wrommese

Slide2.1.9

Y ou can see an example of this converting from a graph to atree here. If we assume that Sisthe
start of our search and we are trying to find a path to G, then we can walk through the graph and
make connections from every node to every connected node that would not create a cycle (and
stop whenever we hit G). Note that such atree has aleaf node for every non-looping path in the

graph starting at S.

Also note, however, that even though we avoided loops, some nodes (the colored ones) are
duplicated in the tree, that is, they were reached along different non-looping paths. This means that

acomplete search of this tree might do extrawork.

Theissue of how much effort to place in avoiding loops and avoiding extra visits to nodesis an
important one that we will revisit later when we discuss the various search algorithms.

Terminology

+ State - Used to refer fo the verlices of the underlying graph that is being seanched,
that s, states in the problem domain, for example, a city, an arrangement of blocks or
the arrangement of parts in a puzzle

+ Search Node — Refers to the verlices of the search tree which is being generated by
the search algorithm. Each node refers to a state of the world, many nodes may refer
to the same state. Importantly, a node implicilly represents a path (from the start state
of the search to the stale associated with the nods). Because search nodes are part of
asearch free, they have a unique ancestor node (except for the root node)

Wi o

Slide2.1.8

Note that trees are a subclass of directed graphs (even when not shown with arrows on the links).
Trees don't have cycles and every node has a single parent (or is the root). Cycles are bad for
searching, since, obviously, you don't want to go round and round getting nowhere.

When asked to search a graph, we can construct an equivalent problem of searching atree by
doing two things: turning undirected links into two directed links; and, more importantly, making
sure we never consider a path with aloop or, even better, by never visiting the same node twice.

Graph Search as Tree Search

- Trees are directed graphs without cycles and with nodes having <=1 parent
+ We can turn graph search problems (from S to G) into free search
problems by:

« replacing undirected links by 2 directed links

« avoiding loops in path {or kesping track of visited nodes globally)

o

o)
7 = 555 e &
& ® @ ® @
&

Slide2.1.10

One important distinction that will help us keep things straight is that between a state and a search
node.

A stateis an arrangement of the real world (or at least our model of it). We assume that thereis an
underlying "real" state graph that we are searching (although it might not be explicitly represented
in the computer; it may beimplicitly defined by the actions). We assume that you can arrive at the
same real world state by multiple routes, that is, by different sequences of actions.

A search node, on the other hand, is a data structure in the search algorithm, which constructs an
explicit tree of nodes while searching. Each node refers to some state, but not uniquely. Note that a
node also corresponds to a path from the start state to the state associated with the node. This
follows from the fact that the search algorithm is generating atree. So, if we return anode, were
returning a path.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

6.034 Notes: Section 2.2

Slide2.2.1 Classes of Search

So, let'slook at the different classes of search algorithms that we will be exploring. The simplest Class Name Operation

classisthat of the uninformed, any-path agorithms. In particular, we will look at depth-fir st Any Path Depth-First Syslemalic exploralion of whole tree
and breadth-first search. Both of these algorithms basically look at all the nodes in the search tree Uninformed Breadth-First untl & goal nods is found

in aspecific order (independent of the goal) and stop when they find the first path to agoal state.

et of

Slide2.2.2
Classes of Search
Class Niims Operation The next class of methods are infor med, any-path a gorithms. The key idea here is to exploit a task
specific measure of goodness to try to either reach the goal more quickly or find amore desirable
Any Path Depth-First Systematic exploration of whole tree goal state
Uninformed Breacth-First urtil & goal node is found :
Any Path Best-First Uses heurislic measure of goodness
Informed of a slate, 8.9, estimated distance to goal
i~ Spiing 02+ £ 4
Slide2.2.3
Classes of Search
Next, we look at the class of uninformed, optimal agorithms. These methods guarantee finding the Class Niiie Operation
"best" path (as measured by the sum of weights on the graph edges) but do not use any information FY— PY——— S e
iai it ny Pal epth-Firs ystematic exploration of whole tree
beyond what isin the graph definition. Uninformed Breadth-First until a goal node is found
Any Path Best-First Uses heuristic measure of goodness
Informed of a state, 8.g. estimated distance to goal
Optimal Uniform-Cost Uses path “length” measure.
Uninformed Finds "shortest’ path.
tp - Sping 02+ & 4
Slide2.2.4
Classes of Search
Class — Operation Finally, we look at informed, optimal algorithms, which also guarantee finding the best path but
which exploit heuristic ("rule of thumb") information to find the path faster than the uninformed
Any Path Depth-First Systematic exploration of whole free methods.
Uninformed Breadth-First until a goal node is found
Any Path Best-First Uses heurislic measure of goodness
Informed of a state, e.g. estimated distance to goal
Optimal Uniform-Cost Uses path “length” measure.
Uninformed Finds "shortest’ path.
Optimal A* Uses path “length” measure and heunistic
Informed Finds "shortest’ path
tp - Sping 02+ 4 (E

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.25
Simple Search Algorithm

A search nods 1s a path from some state X to the startstate, e.g., ((BAS)

The state of a search node is the most recent state of the path, e.g. X

Let Q be alist of search nodes, e (KBAS) (CBAS))

Let S be the start state

The search strategies we will look at are all instances of a common search algorithm, which is
shown here. The basic ideaisto keep alist (Q) of nodes (that is, partial paths), then to pick one such
node from Q, seeif it reaches the goal and otherwise extend that path to its neighbors and add them
back to Q. Except for details, that's all thereistoit.

1. Initialize Q with search node () as only entry; set Visited= (S)
Note, by the way, that we are keeping track of the states we have reached (visited) and not entering 2. [{Qis empty, fail. Else, pick some search node N from Q
them in Q more than once. Thiswill certainly keep us from ever looping, no matter how the 3. If state(N) is a goal, return N (we've reached the goal)
underlying graph is connected, since we can only ever reach a state once. We will explore the 4. (Otherwise) Remove N from Q
impact of this decision later. 5. Find all the descendants of state{N) net in Visited and create all the one-
step extensions of N to each descendant.
6. Add the extended paths to Q; add children of state(N) to Visited

7. Gotostep2.

wemis of

Slide2.2.6
Simple Search Algorithm

A search node is a path from some state Xto the start state, e.g, ({(BAS)

The state of a search node is the most recent state of the path, e.g. X

Let U be alist of search nodes, eg (KBAS) (CBAS))

Let S be the start state

The key questions, of course, are which entry to pick off of Q and how precisely to add the new
paths back onto Q. Different choices for these operations produce the various search strategies.

Initialize Q with search node (S) as only entry; set Visited= (S)
If Q is empty, fail. Else, pick some search node N from Q

If state(N) is a goal, return N (we've reached the goal)
(Otherwise) Remove N from Q

Find all the children of state{N) net in Visited and create all the one-step
extensions of N to each descendant.

6. Add the extended paths to Q; add children of state(N) te Visited
7. Gotostep2.

o ol Ky 2

Critical decisions:
Step 2: picking N from Q

Step 6: adding extensions of Nto Q Ay Sping 02+ 4

Slide2.2.7
Implementing the Search Strategies
At this point, we are ready to actually look at a specific search. For example, depth-first search -
always looks at the deepest node in the search tree first. We can get that behavior by: Dapth;ficsE

Pick first element of Q

. picking the first element of Q asthe node to test and extend. A pelymomiantod

. adding the new (extended) paths to the FRONT of Q, so that the next path to be
examined will be one of the extensions of the current path to one of the descendants
of that node's state.

One good thing about depth-first search is that Q never gets very big. We will look at thisin more
detail later, but it'sfairly easy to see that the size of the Q depends on the depth of the search tree
and not on its breadth.

s

Implementing the Search Strategies Slide2.2.8

Depth-first:

Pick first element of Q

Add path extensions to front of Q
Breadth-first

Pick first element of Q

Add path extensions to end of Q

- Spring 0z +§

Breadth-first is the other major type of uninformed (or blind) search. The basic approach isto once
again pick thefirst element of Q to examine BUT now we place the extended paths at the back of
Q. This means that the next path pulled off of Q will typically not be a descendant of the current
one, but rather one at the same level in tree.

Note that in breadth-first search, Q gets very big because we postpone looking at longer paths (that
go to the next level) until we have finished looking at all the paths at one level.

Welll look at how to implement other search strategiesin just abit. But, first, letslook at some of
the more subtle issues in the implementation.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.2.9

Testing for the Goal
One subtle point is where in the algorithm one tests for success (that is, the goal test). There are two

plausible points: one is when a path is extended and it reaches a goal, the other is when apath is + This algorithm stops (in step 3) when state(N) = G or, in general, when
pulled off of Q. We have chosen the latter (testing in step 3 of the algorithm) because it will state(N) satisfies the goal test.

generalize more readily to optimal searches. However, testing on extension is correct and will save -+ We could have performed this test in step 6 as each extended path is added
some work for any-pa{h searches. to Q. This would catch termination earlier and be perfectly correct for the

searches we have covered so far.

- However, performing the test in step 6 will be incorrect for the optimal
searches. We have chosen to leave the test in step 3 to maintain uniformity
with these future searches.

e of

Slide2.2.10
Terminology
At this point, we need to agree on more terminology that will play akey rolein the rest of our
Visited - a state M is first visited when a path to M first gets added to Q. discussion of search.
In general, a state is said to have been visited if it has ever shown up in
a search node in Q. The intuition is that we have briefly “visited” them Let's start with the notion of Visited as opposed to Expanded. We say a state is visited when a path

to place tham on Q, but we have not yet examined them carefully. that reaches that state (that is, a node that refersto that state) gets added to Q. So, if the state is

anywhere in any nodein Q, it has been visited. Note that thisis true even if no path to that state has
been taken off of Q.

Bt

Slide2.2.11

Terminology
A state M is Expanded when a path to that state is pulled off of Q. At that point, the descendants of

M are visited and the paths to those descendants added to the Q. * Visited - a state M is first visited when a path to M first gets added to Q.

In general, a state is said to have been visited if it has ever shown up in
a search node in Q. The intuition is that we have briefly “visited” them
to place them on @, but we have not yet generated its descendants.

+ Expanded - a state M is expanded when it is the state of a search node
that is pulled off of Q. At that point, the descendants of M are visited
and the path that led to M is extended to the eligible descendants. In
principle, a state may be expanded multiple times. We sometimes refer
to the search node that led to M (instead of M itself) as being expanded.
However, ence a node is expanded we are done with it; we will not need
to expand it again. In fact, we discard it from Q.

sz

Slide2.2.12
Terminology

Please try to get this distinction straight; it will save you no end of grief.

¢« Visited - a state M is first visited when a path to Mfirst gets added to Q.
In general, a state is said to have been visited if it has ever shown up in
a search node in Q. The intuition is that we have briefly “visited” them
to place them on @, but we have not yet examined them carefully.

+ Expanded - a state M is expanded when it is the state of a search node
that is pulled off of Q. At that point, the descendants of M are visited
and the path that led to M is extended to the eligible descendants. In
principle, a state may be expanded multiple times. We sometimes refer
to the search node that led to M (instead of M itself) as being expanded.
However, once a node is expanded we are done with it; we will not need
to expand it again. In fact, we discard it from Q.

+ This distinction plays a key role in our discussion of the various search
algorithms; study it carefully.

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.2.13

In our description of the simple search algorithm, we made use of a Visited list. Thisisalist of al
the states corresponding to any node ever added to Q. As we mentioned earlier, avoiding nodes on
the visited list will certainly keep us from looping, even if the graph hasloopsin it. Note that this
mechanism is stronger than just avoiding loops locally in every path; thisis aglobal mechanism
across al paths. In fact, it is more general than aloop check on each path, since by definition aloop
will involve visiting a state more than once.

But, in addition to avoiding loops, the Visited list will mean that our search will never expand a state
more than once. The basic ideais that we do not need to search for a path from any state to the goal
more than once. If we did not find a path the first time we tried it, oneis not going to materialize the
second time. And, it saves work, possibly an enormous amount, not to look again. More on this
later.

Slide2.2.14
Implementation Issues: The Visited list

Visited States

Keeping track of visited states generally improves time efficiency when
searching graphs, without affecting comrectness. MNote, however, that
substantial additional space may be required to keep track of visited states.

If all we want to do is find a path from the start to the goal, there is no
advantage to adding a search node whose state is already the state of
another search node.

Any state reachable from the node the second time would have heen
reachable from that node the first time.

Note that, when using Visited, each state will only ever have at most one
path to it (search node) in Q.

We'll have to revisit this issue when we look at optimal searching.

- Springoz - 15

Although we speak of a Visited list, this is never the preferred
implementation.

If the graph states are known ahead of time as an explicit set, then space is
allocated in the state itself to keep a mark; which makes hoth adding te
Visited and checking if a state is Visited a constant time operation.

Alternatively, as is more common in Al, if the states are generated on the
fly, then a hash table may he used for efficient detection of previously
visited states.

A word on implementation: Although we speak of a"Visited list", it is never agood ideato keep
track of visited states using alist, since we will continually be checking to see if some particular
state is on the list, which will require scanning the list. Instead, we want to use some mechanism that
takes roughly constant time. If we have a data structure for the states, we can simply include a "flag"
bit indicating whether the state has been visited. In general, one can use a hash table, a data structure
that allows us to check if some state has been visited in roughly constant time, independent of the
size of the table. Still, no matter how fast we make the access, this table will still require additional
space to store. We will see later that this can make the cost of using a Visited list prohibitive for
very large problems.

Note that, in any case, the incremental space cost of a Visited list will be
proportional to the number of states - which can be very high in some
problems.

Bt g

Slide2.2.15

Another key concept to keep straight isthat of a heuristic value for a state. The word heuristic
generaly refersto a"rule of thumb", something that's helpful but not guaranteed to work.

Slide2.2.16
Terminology

Terminology

Heuristic - The word generally refers to a “rule of thumb,” something that
may he helpful in some cases but not always. Generally held to be in
contrast to “guaranteed” or “optimal.”

- Spring 02+ 15

Heuristic — The weord generally refers to a “rule of thumb,” something that
may be helpful in some cases but not always. Generally held to he in
contrast to “guaranteed” or “optimal.”

Heuristic function - In search terms, a function that computes a value for a
state (but does not depend on any path to that state) that may be helpful in
guiding the search. There are two related forms of heuristic guidance that
one sees:

tp - Spring 02+ 15

A heuristic function has similar connotations. It refers to a function (defined on a state - not on a
path) that may be helpful in guiding search but which is not guaranteed to produce the desired
outcome. Heuristic searches generally make no guarantees on shortest paths or best anything (even
when they are called best-first). Nevertheless, using heuristic functions may still provide help by
speeding up, at least on average, the process of finding agoal.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.2.17

Terminology
If we can get some estimate of the "distance" to agoal from the current node and we introduce a « Heuristic - The word generally refers to a “rule of thumb,” something that
preference for nodes closer to the goal, then there is a good chance that the search will terminate may be helpful in some cases but not always. Generally held to be in
more quickly. Thisintuition is clear when thinking about “airline" (as-the-crow-flies) distance to contrast to “guaranteed” or “optimal.”
guide a search in Euclidean space, but it generalizes to more abstract situations (as we will see). « Heuristic function — In search terms, a function that computes a value fora

state (but does not depend on any path to that state) that may be helpful in
guiding the search.

Estimated distance to goal - this type of heuristic function depends on the
state and the goal. The classic example is straight-line distance used as an
estimate for actual distance in a road network. This type of information can
help increase the efficiency of a search.

oot g

Slide2.2.18
Implementing the Search Strategies

Best-first (also known as "greedy") search is a heuristic (informed) search that uses the value of a

Oepth-fit heuristic function defined on the states to guide the search. Thiswill not guarantee finding a "best"
Flick first element of & path, for example, the shortest path to agoal. The heuristic is used in the hope that it will steer usto
Add path exlensions to fronl of Q aquick completion of the search or to arelatively good goal state.

Breadth-first

Best-first search can be implemented as follows: pick the "best" path (as measured by heuristic

Ridkistelomentol O value of the node's state) from all of Q and add the extensions somewhere on Q. So, at any step, we

Add path extensions to end of Q are always examining the pending node with the best heuristic value.
Best-first:
Pick "best* (messured by heuristic value of state) element of Q Note that, in the worst case, this search will examine al the same paths that depth or breadth first
A aied h a . would examine, but the order of examination may be different and therefore the resulting path will
path exdensions anmywhere in Q (it may be more efficient to keep the Q

ordared in some way 50 23 o make il sasier to find he *best’ eleman) generally be diffgrent. Bes_t—first has akind of breadth-first flavor and we expect that Q will tend to
grow more than in depth-first search.

Bt o

Slide2.2.19
Implementation Issues: Finding the best node
Note that best-first search requires finding the best node in Q. Thisis aclassic problem in computer
science and there are many different approaches that are appropriate in different circumstances. One
simple method is simply to scan the Q completely, keeping track of the best element found.))
Surprisingly, this simple strategy turns out to be the right thing to do in some circumstances. A more * Scanning Qto find lowest value

sophisticated strategy, such as keeping a data structure called a "priority queue”, is more often the * Sorting Q and picking the first element

correct approach. We will pursue thisissue further when we talk about optimal searches. K"ang the'd s°"_t°'{ by daing “sorted” Insertions
Keeping Q as a priority queue

There are many possible approaches to finding the best nede in Q.

Which of these is best will depend among other things on how many
children nodes have on average. We will ook at this in more detail later.

= Sprng 02+ 18 4
Slide2.2.20
Worst Case Running Time
Max Time < Max #Visited Let's think a bit about the worst case running time of the searches that we have been discussing. The
) > actual running time, of course, will depend on details of the computer and of the software
Thelnumbetef statesin theisearch =0 h=2 implementation. But, we can roughly compare the various algorithms by thinking of the number of
space may he exponential in some . K R .
“depth” parameter, e.g. number of nodes added to Q. The running time should be roughly proportional to this number.
actions in a plan, number of moves in d =1
agame. In Al we usually think of a"typical" search space as being a tree with uniform branching factor b
and depth d. The depth parameter may represent the number of stepsin aplan of action or the
d=2 number of moves in agame. The branching factor reflects the number of different choices that we
have at each step. It is easy to see that the number of statesin such atree grows exponentially with
0000O0O0OO the depth.
d is depth
h is branching facter
b < (b =1} £ {b = 1) < bt
states in tree
i+ Spring 02+ 20 (E

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.2.21

In atree-structured search space, the nodes added to the search Q will simply correspond to the
visited states. In the worst case, when the states are arranged in the worst possible way, all the
search methods may end up having to visit or expand all of the states (up to some depth). In
practice, we should be able to avoid this worst case but in many cases one comes pretty close to this

worst case.

Worst Case Space
Max Q size = Max (#Visited - #Expanded)

A
/]
A

Q visited
@ expanded

Depth First max Q size
(h=1)d ~hd

- Spring 02+ 22

¢

Slide2.2.23

The situation for breadth-first search is much different than that for depth-first search. Here the
worst case happens after we've visited all the nodes at depth d-1. At that point, all the nodes at depth
d have been visited and none expanded. So, the Q has size bd, that is, a size exponential in d.

Note that, in the worst case, best-first behaves as breadth-first and has the same space requirements.

Cost and Performance of Any-Path Methods

Searching a tree with branching factor b and depth d
{without using a Visited list)

Search Worst Worst Fewest Guaranteed to
Method Time Space states? find path?
Depth-First e+ 1 bd Mo Yes"
Breadth-first 1 bd Yes Yes
Best-First 1 b No Yes"

*If there are no infinitely long paths in the search space
** BestFirst needs more fime to locate the best node in Q

Worst case time is proportional to number of nodes added to Q
Worst case space is proportional to maximal length of Q

tp - Spring 02+ 24

¢

Worst Case Running Time

Max Time oc Max #Visited

» The number of states in the search d=0

space may he exponential in some

“depth” parameter, e.g. number of

actions in a plan, number of moves in

agame.
+ Allthe searches, with or without

visited list, may have to visit each d=2

state at least once, in the worst case. j ‘/\ f\
+ So, all searches will have worst case

running times that are at least 00000000

proportional to the total number of dis depth

states and therefore exponential in b is branching factor

the “depth” parameter.

bd < (b1 = 1) (b - 1) < bt

states in tree

oo gf

Slide2.2.22

In addition to thinking about running time, we should also think about the memory space required
for searches. The dominant factor in the space requirements for these searches is the maximum size
of the search Q. The size of the search Q in atree-structured search space is simply the number of
visited states minus the number of expanded states.

For a depth-first search, we can see that Q holds the unexpanded "siblings" of the nodes along the
path that we are currently considering. In atree, the path length cannot be greater than d and the
number of unexpanded siblings cannot be greater than b-1, so thistells us that the length of Qis
always less than b*d, that is, the space requirements are linear in d.

Worst Case Space
Max Q size = Max (#Visited - #Expanded)

§ 0 v N
./.f{/\T. AN /f//‘T AN

Depth First max Q size Breadth First max Q size
(h-1d~bd bt

wespmies

Slide2.2.24

This table summarizes the key cost and performance properties of the different any-path search
methods. We are assuming that our state space is atree and so we cannot revisit states and a Visited
listisuseless.

Recall that this analysisis done for searching atree with uniform branching factor b and depth d.
Therefore, the size of this search space grows exponentially with the depth. So, it should not be
surprising that methods that guarantee finding a path will require exponential time in this situation.
These estimates are not intended to be tight and precise; instead they are intended to convey a
feeling for the tradeoffs.

Note that we could have phrased these results in terms of V, the number of vertices (nodes) in the
tree, and then everything would have worst case behavior that islinear in V. We phrase it the way
we do because in many applications, the number of nodes depends in an exponential way on some
depth parameter, for example, the length of an action plan, and thinking of the cost aslinear in the
number of nodes is misleading. However, in the algorithms literature, many of these algorithms are
described as requiring time linear in the number of nodes.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

There are two points of interest in this table. One is the fact that depth-first search requires much
less space than the other searches. Thisisimportant, since space tends to be the limiting factor in large problems (more on this later). The other isthat the time cost of best-first
search is higher than that of the others. Thisis due to the cost of finding the best node in Q, not just the first one. We will also look at thisin more detail later.

Slide2.2.25
Cost and Performance of Any-Path Methods
Remember that we are assuming in this slide that we are searching atree, so states cannot be visited Searching a tree with branching factor b and depth d
more than once - so the Visited list is completely superfluous when searching trees. However, if we {using a Visited list)
wereto use a Visited list (even implemented as a constant-time access hash table), the only thing Search Waorst Worst Fewest Guaranteed to
that seems to change in thistable is that the worst-case space requirements for all the searches go up Method Time Space states? find path?
(and way up for depth-first search). That does not seem to be very useful! Why would we ever use a Depth-First pd1 be b Mo Ves"
Visited list? Breadth-first T Pob | Ves Yes
Best-First 1™ o | No Yos"
*If there are no infinitely long paths in the search space
** BestFirst needs more time to locate the bestnode in Q
Worst case time is proportional to number of nodes added to Q@
Worst case space is proportional to maximal length of Q (and Visited list)
i+ Spring 02 + 28 (E
Slide 2.2.26
States vs Paths
Aswe mentioned earlier, the key observation isthat with a Visited list, our worst-case time
performance is limited by the number of statesin the search space (since you visit each state at most
once) rather than the number of paths through the nodes in the space, which may be exponentially
larger than the number of states, as this classic example shows. Note that none of the pathsin the
- tree have aloop in them, that is, no path visits a state more than once. The Visited list isaway of
spending space to limit this time penalty. However, it may not be appropriate for very large search
spaces where the space requirements would be prohibitive.
] e & © ¢ o
- Spring 02+ 26 4
Slide2.2.27

Space

So far, we have been treating time and space in parallel for our algorithms. It is tempting to focus on (the finalfrontler)

time as the dominant cost of searching and, for real-time applications, it is. However, for large off-

line applications, space may be the limiting factor. + Inlarge search prohlems, memory is often the limiting factor.

Imagine searching a tree with branching factor 8 and depth 10. Assume a
If you do a back of the envelope calculation on the amount of space required to store atree with node requires just B bytes of storage. Then, breadth-first search might
branching factor 8 and depth 10, you get a very large number. Many real applications may want to require up to
explore bigger spaces. (23)10x23=2% bytes = 8,000 Mbytes = BGbytes

tp - Spring 02 - 27 (ﬁ

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Space

{the final frontier)

+ Inlarge search problems, memory is often the limiting facter.

- Imagine searching a tree with branching factor 8 and depth 10. Assume a
node requires just 8 bytes of storage. Then, breadth-first search might
require up to

(2%)10x 23=28 hytes = 8,000 Mbytes = BGhytes
+ One strategy is to trade time for memory. For example, we can emulate

breadth-first search by repeated applications of depth-first search, each up
to a preset depth limit. This is called progressive deepening search (PDS):

1. ¢cA
2. Do DFS to max depth C. If path found, return it.
3. Otherwise, increment C and go to 2.

- Springo2- 26

Slide2.2.28

¢

Slide2.2.29

Depth-first search has one strong point - its limited space requirements, which are linear in the depth
of the search tree. Aside from that there's not much that can be said for it. In particular, it is
susceptible to "going off the deep-end”, that is, chasing very deep (possibly infinitely deep) paths.
Because of thisit does not guarantee, as breadth-first, does to find the shallowest goal states - those

requiring the fewest actions to reach.

Progressive Deepening Search
Best of Both Worlds

+ Depth-First Search {DFS) has small space requirements (linear in depth),
but has major problems:
« DFS can run forever in search spaces with infinite length paths
+ DFS does not guarantee of finding shallowest goal

+ Breadth-First Search (BFS) guarantees finding shallowest goal, even in
the presence of infinite paths, but is has ene great problem:

« BFS requires a great deal of space (exponential in depth)

- Spring 02+ 8

Slide2.2.30

¢

Slide2.2.31

Progressive-deepening search, on the other other hand, has both limited space requirements of DFS

and the strong optimality guarantee of BFS. Great! No?

One strategy for enabling such open-ended searches, which may run for avery long time, is
Progressive Deepening Search (aka Iterative Deepening Search). The basic ideaisto simulate
searches with a breadth-like component by a succession of depth-limited depth-first searches. Since
depth-first has negligible storage requirements, thisis a clean tradeoff of time for space.

Interestingly, PDS is more than just a performance tradeoff. It actually represents a merger of two
algorithms that combines the best of both. Let's ook at that alittle more carefully.

Progressive Deepening Search
Best of Both Worlds

Depth-First Search {DFS) has small space requirements {linear in depth),
hut has majer prohlems:

« DFS can run forever in search spaces with infinite length paths

+ DFS does not guarantee finding shallowest goal

Bz

Breadth-first search on the other hand, does guarantee finding the shallowest goal, but at the
expense of space requirements that are exponential in the depth of the search tree.

Progressive Deepening Search
Best of Both Worlds

Depth-First Search {DFS) has small space requirements {linear in depth),
but has major problems:

« DFS can run forever in search spaces with infinite length paths

+ DFS does not guarantee of finding shallowest goal

Breadth-First Search (BFS) guarantees finding shallowest goal, even in
the presence of infinite paths, but is has ene great problem:

« BFS requires a great deal of space (exponential in depth)

Progressive Deepening Search (PDS) has the advantages of DFS and
BFS.

« PDS has small space requirements (linear in depth)

+ PDS guarantees finding shallowest goal

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Progressive Deepening Search

Isn’t Progressive Deepening (PDS) too expensive?

- springoz- 52

¢

Slide2.2.33

In small graphs, yesit iswasteful. But, if we really are faced with an exponentially growing space
(in the depth), then it turns out that the work at the deepest level dominates the total cost. + Isn't Progressive Deepening (PDS) too expensive?

Progressive Deepening Search

Isn’t Progressive Deepening (PD3) too expensive?
In exponential trees, time is dominated by deepest search.

For example, if branching facter is 2, then the number of nedes at depth
d is 24 while the total number of nodes in all previous levels is 241, so
the difference between looking at whole tree versus only the deepest
level is at worst a factor of 2 in performance.

2441

- Spring 02+ 54

¢

Slide2.2.35

One can derive an estimate of the ratio of the work done by progressive deepening to that done by a
single depth-first search: (b+1)/(b-1). This estimate is for the average work (averaging over all + Compare the ratio of average time spent on PDS with average time spent
possible searches in the tree). As you can see from the table, this ratio approaches one as the
branching factor increases (and the resulting exponential explosion gets worse).

Slide2.2.32

At first sight, most people find PDS horrifying. Isn't progressive deepening really wasteful ? It looks
at the same nodes over and over again...

Progressive Deepening Search

In exponential trees, time is dominated by deepest search.

Bz o

Slide2.2.34

It iseasy to see thisfor binary trees, where the number of nodes at level d is about equal to the
number of nodesin the rest of the tree. The worst-case time for BFS at level d is proportional to the
number of nodes at level d, while the worst case time for PDS at that level is proportional to the
number of nodes in the whole tree which is almost exactly twice those at the deepest level. So, in the
worst case, PDS (for binary trees) does no more than twice as much work as BFS, while using much
less space.

Thisisaworst case analysis, it turns out that if we try to look at the expected case, the situation is
even better.

Progressive Deepening Search

on a single DF S with the full depth tree:
(Avg time for PDS)i{Avg time for DFS) ss (b#+1)i(b-1)

b rafio
2 3

3 2

] 15
25 108
100|102

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.2.36
Progressive Deepening Search

For many difficult searches, progressive deepening isin fact the only way to go. There are also

Compare the ratio of average time spent on PDS with average time spent i i i i i v
on a'single DFS with the full depth tee: g;ﬁg;em ve deepening versions of the optimal searches that we will see later, but that's beyond our

(Avg time for PDS)/{Avg time for DFS) = (b+1)i{b-1)
Progressive deepening is an effective strategy for difficult searches.

e re|o
r

100|102

oo gf

6.034 Notes: Section 2.3

Slide2.3.1 Depth-First

We will now step through the any-path search methods looking at their implementation in terms of Pick first element of Q; Add path extensians fo frant of Q
the simple algorithm. We start with depth-first search using a Visited list.

The table in the center shows the contents of Q and of the Visited list at each time through the loop Q Visited D
of the search algorithm. The nodesin Q are indicated by reversed paths, blue is used to indicate 1 O
newly added nodes (paths). On theright is the graph we are searching and we will [abel the state of 5 o,
the node that is being extended at each step.)

3 €D,

+ @

5

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.

lp » Spring bz + 1 4

. Slide2.3.2
Depth-First
Thefirst step isto initialize Q with a single node corresponding to the start state (Sin this case) and
Pick first element of Q; Add path extensions to front of Q

the Visited list with the start state.

Q Visited >
; () s D &
3 1 &
+ B
5

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

Wiz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.3.3
Depth-First
We pick the first element of Q, which isthat initial node, remove it from Q, extend its path to its)
descendant states (if they have not been Visited) and add the resulting nodes to the front of Q. We Bekirstelemsntol Q. Add peiexensionsfofrontolQ
also add the states corresponding to these new nodes to the Visited list. So, we get the situation on
line2.

Q Visited
Note that the descendant nodes could have been added to Q in the other order. Thiswould be (S) $
absolutely valid. We will typically add nodesto Q in such away that we end up visiting statesin (AS)(BS) AB,S

alphabetica order, when no other order is specified by the algorithm. Thisis purely an arbitrary
decision.

| e M| =

We then pick the first node on Q, whose state is A, and repeat the process, extending to paths that
end at C and D and placing them at the front of Q.

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

e of

Slide2.34
Depth-First

) We pick the first node, whose state is C, and note that there are no descendants of C and so no new
Pick first element of (1 Add path extensions to frontof Q

nodes to add.
Q Visited
(S) s
(AS)(BS) AB,S
(CAS)DAS)(BS) |CDBAS

A IR

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

oot
Slide2.3.5
Depth-First
We p[c_k the_first node of Q, whose state is D and consider extending to states C and G, but Cison Pick st elementof @, Add path extensiors o frontof @
the Visited list so we do not add that extension. We do add the path to G to the front of Q. 3
Q Visited

1 (9 S

2 |(AS)(BS) AB,S

3 |(CAS)DAS)(BS) |CDBAS

4 |(DASBS) CDBAS

5

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

wespmiees

Slide2.3.6
Depth-First

We pick the first node of Q, whose state is G, the intended goal state, so we stop and return the path.
Pick first element of G Add path extensions to frontof Q

Q Visited
1 (S) S
2 (AS)(BS) AB,S
3 (CAS)(DAS)(BS) |CDBAS
4 |(DAS)BS) CDBAS
5 (GDAS)(BS) G,C,DBAS

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

wespmize

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.3.7
Depth-First

Thefinal path returned goes from Sto A, then to D and then to G.)
Pick first element of (i Add path extensions to frontof Q

Q Visited
1 |® s
2 |(AS)(ES) AB,S
3 |(CAS)DAS)(BS) |CDBAS
4 |(DASES) CD,BAS
5 |[cDASIBS) G,CDBAS

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

et of

Slide2.3.8
Depth-First
Ancher (easier® way Io see 1 Tracing out the content o_f Q can get a_IittIe monotonous, glthoggh i_t alowsoneto _trace the
performance of the algorithmsin detail. Another way to visualize simple searches isto draw out the
search tree, as shown here, showing the result of the first expansion in the example we have been

looking at.

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

s

Slide2.3.9
Depth-First
In this view, we introduce a l€eft to right biasin deciding which nodes to expand - thisis purely

arbitrary. It corresponds exactly to the arbitrary decision of which nodes to add to Q first. Giving Anobierfosierd) weyloges !

this bias, we decide to expand the node whose state is A, which ends up visiting C and D.
1

é‘\;.\

Mumbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

wespmies

Slide2.3.10
Depth-First
Anchr (easier?) way lo s I We now expand the node corresponding to C, which has no descendants, so we cannot continue to
LY go deeper. At this point, one talks about having to back up or backtrack to the parent node and
expanding any unexpanded descendant nodes of the parent. If there were none at that level, we
would continue to keep backing up to its parent and so on until an unexpanded node is found. We

2
‘/.\ & declare failure if we cannot find any remaining unexpanded nodes. In this case, we find an
‘ \ i D unexpanded descendant of A, namely D.
3
@

1

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

sz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.3.11

So, we expand D. Note that states C and G are both reachable from D. However, we have already
visited C, so we do not add a node corresponding to that path. We add only the new node

corresponding to the path to G.

Depth-First

Another (easier?) way o see it

r

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

- Spring 02+ 12

¢

Slide2.3.13

We can repeat the depth-first process without the Visited list and, as expected, one sees the second
path to C added to Q, which was blocked by the use of the Visited list. I'll leave it as an exercise to

go through the steps in detail.

Note that in the absence of a Visited list, we still require that we do not form any paths with loops,
so if we have visited a state along a particular path, we do not re-visit that state again in any

extensions of the path.

Breadth-First

Pick first element of G Add path extensions to end of Q

Q Visited G
1|9 s
2 (8>
3
4 2 ¥
5 &
§

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

tp - Spring 02+ 14

¢

Depth-First

Another (easier?) way o see it

3 ‘ A\ 1 2
& o ©
NB: C is not
visited again
Numbers indicate order pulled off of Q (expanded)
Dark blue fill = Visited & Expanded
Light gray fill = Visited
p- Springo2 - 11 (E
Slide2.3.12
We now expand G and stop.

Thisview of depth-first search is the more common one (rather than tracing Q). In fact, it isin this
view that one can visuaize why it is called depth-first search. The red arrow shows the sequence of
expansions during the search and you can see that it is always going as deep in the search tree as
possible. Also, we can understand another widely used name for depth-first search, namely
backtracking search. However, you should convince yourself that thisview isjust adifferent way
to visualize the behavior of the Q-based algorithm.

Depth-First {without Visited list)

Pick first element of G Add path extensions to frontof Q

Q

®

(A5 B3
{CAS)DAS){BS)
DASIBS)
{CDAS){GDAS)(BS)
GDAG)BS)

N R

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.
Do not extend a path to a state if the resulting path would have a loop.

sz

Slide2.3.14

Let'slook now at breadth-first search. The difference from depth-first search is that new paths are
added to the back of Q. We start as with depth-first with the initial node corresponding to S.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.3.15
Breadth-First

We pick it and add pathsto A and B, as before.)
Pick first element of Q; Add path extensions to end of Q

Q Visited O
18 s
2 |{AS)(BY) ABS (8 &
3 1 (oD
T P,
5 &
6

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

oot g

Slide2.3.16
Breadth-First
We pick the first node, whose state is A, and extend the path to C and D and add them to Q (at the

Pick first element of G; Add path extensions to end of Q back) and here we see the difference from depth-first

Q Visited
(S) S
(AS)(BS) ABS
(BS)(CAS)DAS) CDBAS

AR RS

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

Bresmets o

Slide2.3.17 .
Breadth-First
Now, thefirst nodein Q is the path to B so we pick that and consider its extensionsto D and G.

Pick first element of G Add path extensions to end of Q

Since D isalready Visited, we ignore that and add the path to G to the end of Q.

Breadth-First

Pick first element of G Add path extensions to end of Q

Q Visited
1@)
2 [(A9B9) ABS
3 |[BSICASIDAS CDBAS
4 [CASIDAS) (GBS GCDBAS
5
§

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.

sz

Q Visited
1@ s
2 [(A9B9) ABS
3|BSCASIDAS CDBAS
4 [CASIDAS) (GBS GCDBAS
5
§

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.

- Spring 02+ 17

¢

Slide2.3.18

At this point, having generated a path to G, we would be justified in stopping. But, as we mentioned

earlier, we proceed until the path to the goal becomes the first path in Q.

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.3.19
Breadth-First

We now pull out the node corresponding to C from Q but it does not generate any extensions since)
Pick first element of Q; Add path extensions to end of Q

C has no descendants.

Breadth-First

Pick first element of G; Add path extensions to end of Q

Q Visited
11(8) S
2 |(AS)(BS) ABS
3 |(BS)(CAS)DAS) CDBAS
4 |[(CAS)(DAS)(GBSY G.CDBAS
5 |(DAS)(GBS) G,C,DBAS
]

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.

Bz

Slide2.3.21

Finally, we get the path to G and we stop.

Breadth-First

Pick first element of G Add path extensions to end of Q

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.

ez

Slide 2.3.20

Q Visited
11(8) S
2 |(AS)(BS) ABS
3 |(BS)ICAS)DAS) CDBAS
4 |[(CAS)(DAS)(GBSY GCDBAS
5 |(DAS)(GBS) G,C,DBAS
]

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.

oot g

So we pull out the path to D. Its potential extensions are to previously visited states and so we get

nothing added to Q.

Slide 2.3.22

Pick first element of G Add path extensions to end of Q

Breadth-First

Q Visited
1@ s
2 [(A9B9) ABS
3|BSCASIDAS CDBAS
4 [CASIDAS) (GBS GCDBAS
5 [DASI(GBS) GCDBAS
6 [GBS GCDBAS

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.

=+ Spring 02 21

¢

Note that we found a path with fewer states than we did with depth-first search, from StoB to G. In
general, breadth-first search guarantees finding a path to the goal with the minimum number of

states.
Q Visited
1@)
2 [(A9B9) ABS
3|BICASIDAS CDBAS
4 [CASIDAS) (GBS GCDBAS
5 |DASI(GBS) G,CDBAS
§ |GBs) G,C,D,BAS

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.3.23
Breadth-First
Here we see the behavior of breadth-first search in the search-tree view. In this view, you can see .
why it is called breadth-first -- it is exploring all the nodes at asingle depth level of the search tree Aaglharteamielel vaogea |l

before proceeding to the next depth level.

NB: D is not
visited again 3

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

oo gf

Slide2.3.24
Breadth-First {without Visited list)
5 St e B S et lacendh B We can repeat the breadth-first process without the Visited list and, as expected, one sees multiple

g F pathsto C, D and G are added to Q, which were blocked by the Visited test earlier. I'll leaveit asan

exercise to go through the steps in detail.

Q

)

(AS)(BS)

BS)CAS)DAS)
(CAS)DAS){DBS)(GB g*
(DAS)(DBS)(GBS)
(DBS){GBS)(CDAS){GDAS)
(GBS)‘(CDAS)(GDAS)(CDBS)(GDBS)
Added paths in blue

We show the paths in reversed order; the node's state is the first entry.
*We could have stopped here, when the first path to the goal was generated.

~N| |||

Bz o

Slide2.3.25
Best-First

Finally, let'slook at Best-First Search. The key difference from depth-first and breadth-first is that
Plick "best’ (by heunisltic value) element of Q; Add path extensions anywhere in Q

we look at the whole Q to find the best node (by heuristic value).

We start as before, but now we're showing the heuristic value of each path (which isthe value of its 0 Visited
state) in the Q, so we can easily see which one to extract next. {105) 5

S A

Heuristic Values
A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

sz

Slide 2.3.26
Best-First

We pick the first node and extend to A and B.
Plick "best’ (by heunistic value) element of Q; Add path extensions anywhers in Q

Q Visited
{105))
2AS) (3BS) ABS

AN

Heuristic Values
A=2 c= $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

ez

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.3.27
Best-First

We pick the node corresponding to A, sinceiit has the best value (= 2) and extend to C and D.))
Pick ‘best’ (by heurislic value) element of Q; Add path extensions anywhere in Q

Q Visited
{108) S
2AS)(3BSY) ABS

(1CAS)(3BS)4DAS) |CDBAS

R

Heuristic Values
A=2 c= $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

oo g

Slide2.3.28
Best-First

;) The node corresponding to C has the lowest value so we pick that one. That goes nowhere.
Pick "best’ (by heurislic value) element of Q; Add path extensions anywhere in Q

Q Visited
1] os) s
2 |2AS)ABS) ABS
3|CAS) 3BS)UDAS) |CDBAS
4 |3BS)(4DAS) CDBAS
5 Heuristic Values

A=2 c=A $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.
We show the paths in reversed order; the node's state is the first entry.

B o

Slide 2.3.29
Best-First

Then, we pick the node corresponding to B which has lower value than the path to D and extend to
Plick "best’ (by heunisltic value) element of Q; Add path extensions anywhere in Q

G (not C because of previous Visit).

Q Visited
1 |os) s
2 |eAs)3BY) ABS
3|icAs) 3BS)#DAS) |CDBAS
4 |3BS(4DAS) CDBAS
5 ((0GBS)@4DAS) G,CDBAS Heuristic Values

A=2 c=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.
We show the paths in reversed order; the node's state is the first entry.

wespmizs

Slide 2.3.30
Best-First

We pick the node corresponding to G and rejoice.
Plick "best’ (by heunistic value) element of Q; Add path extensions anywhers in Q

Q Visited
1 |os))
2 |eAs) 3B ABS
3 [(1CAS)3BS)(4DAS) |CDBAS
4 |3BS)(4DAS) CDBAS
5 ((0GBS)(4DAS) G,CDBAS Heuristic Values

A=2 c= $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.
We show the paths in reversed order; the node's state is the first entry.

iz

6.034 Artificial Intelligence. Copyright © 2004 by Massachusetts Institute of Technology.

Slide2.3.31

We found the path to the goal from Sto B to G.

Best-First

Pick ‘best’ (by heurislic value) element of Q; Add path extensions anywhere in Q

Q Visited
1((108) S
2 |[(2AS8)(3BY) ABS
3 |(ICAS)(3BS)(4DAS) CDBAS
4 |3BS)4DAS) CDBAS
5 |(0GBS) td- DAS) G,C,DBAS

Heuristic Values
A=2 c= $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

oo g

