2012 American Control Conference
Fairmont Queen Elizabeth, Montréal, Canada
June 27-June 29, 2012

Scalable, MDP-based Planning for Multiple, Cooperating Agents

Joshua D. Redding™, N. Kemal Ure*, Jonathan P. How**
Aerospace Controls Laboratory, MIT
Cambridge, MA, USA

Matthew A. Vavrina' and John Vian'T
Boeing Research & Technology
Seattle, WA, USA

Abstract— This paper introduces an approximation algo-
rithm for stochastic multi-agent planning based on Markov
decision processes (MDPs). Specifically, we focus on a de-
centralized approach for planning the actions of a team of
cooperating agents with uncertainties in fuel consumption and
health-related models. The core idea behind the algorithm
presented in this paper is to allow each agent to approximate the
representation of its teammates. Each agent therefore maintains
its own planner that fully enumerates its local states and actions
while approximating those of its teammates. In prior work,
the authors approximated each teammate individually, which
resulted in a large reduction of the planning space, but remained
exponential (in n — 1 rather than in n, where n is the number
of agents) in computational scalability. This paper extends the
approach and presents a new approximation that aggregates all
teammates into a single, abstracted entity. Under the persistent
search & track mission scenario with 3 agents, we show that
while resulting performance is decreased nearly 20% compared
with the centralized optimal solution, the problem size becomes
linear in n, a very attractive feature when planning online for
large multi-agent teams.

I. INTRODUCTION

Many interesting applications of autonomous robotic sys-
tems benefit from, or even require, the use of multiple
agents. Enabling efficient, preferably near-optimal, coopera-
tion between these agents is the objective of any cooperative
planning algorithm. Cooperative planners based on Markov
decision processes (MDPs) [1]-[3] have shown tremendous
versatility in modeling such systems. Unfortunately, MDPs
and related dynamic programming techniques have known
scaling issues [4], and quickly become intractable as the
number of participating agents increases. As a result, there
exists many approximate dynamic programming (ADP) al-
gorithms designed to compensate for this computational
challenge [5,6]. While many of these approaches have shown
success in classes of problems that cannot be solved exactly
(e.g. [7]), most have fundamental limitations such as the
difficulty of selecting an appropriate approximation archi-
tecture or the absence of proper guidance to tune algorithm
parameters.

+Research Lead, Procerus Technologies joshr@procerus.com

*Ph.D. candidate in the ACL at MIT ure@mit .edu

**Richard C. Maclaurin Professor of Aeronautics and Astronautics,
Aerospace Controls Laboratory (Director), MIT, jhow@mit .edu

TResearch Eng. at Boeing R&T matthew.a.vavrina@boeing.com

Tt Technical fellow at Boeing R&T john.vian@boeing.com

978-1-4577-1096-4/12/$26.00 ©2012 AACC

Another concept directly associated with multi-agent sys-
tems is decentralized decision making, where agents need to
decide their own actions while communicating observations
etc. with other agents to maximize a global reward function.
A thorough survey on the subject is presented [8]. One of
the fundamental work in the area is [9], where each agent
can only observe a portion of the environment and other
agent’s states, resulting in a decentralized partially observ-
able Markov decision process (Dec-POMDP). The authors
in [10] investigated the complexity of various decentralized
formulations and showed that most of them are computa-
tionally intractable except some simple cases. Methods in
[11] offer some guidance on how to relax this complexity
for special cases. One potentially tractable approach to this
problem is a transition independent MDP (TI-MDP), found
in [12]. Although this approach scales to higher dimensions
better than many others, it requires an extensive list of
state transition histories per agent, referred to as events.
Decentralized planning with communication constraints have
been investigated in [13,14], where it is shown that the
communication problem (namely, if communication is cost-
effective) can be embedded into the decision making prob-
lem by separating communication actions from conventional
actions and adding a communication cost to the reward
function. In addition, decentralized sparse interaction MDPs
(Dec-SIMDPs) have been introduced in [15] to deal with
computation limitations by dividing by differentiating the
parts of the state space where agents need to cooperate from
the parts where they can act independently. Motivated by the
limited scalability and implementation difficulties of the ex-
isting algorithms, this research aims to develop decentralized
and scalable approximate planning models that are solvable
in real-time without sacrificing too much optimality. The
authors have previously introduced a decentralized problem
formulation for a multi-agent persistent surveillance problem
and experimentally verified it in [16]. This work extends
these previous results by increasing the scalability of the
formulation and thus allowing to solve larger, more complex
problems. Specifically, we introduce a method for each agent
to approximate the state-action space of all its teammates in
cooperative, multi-agent domains.

6011

Fig. 1. Mission scenario: N autonomous agents cooperate to continuously
survey a specified region and to track any objects of interest discovered
there while maintaining constant communication with the base location.
This behavior is to be persistently maintained even under sensor, actuator
and battery health degradations.

II. PROBLEM DESCRIPTION

Although the approximation techniques introduced in this
paper are not tied to any specific multi-agent mission sce-
nario, the remainder of this paper applies the approximation
in the context of a persistent search and track (PST) mission
scenario. The purpose of this section is to briefly describe
this scenario, while Refs. [16,17] provide more details. As
shown in Figure 1, the mission area is divided into three
distinct, spatial regions. These regions are labeled as the
Surveillance, Communication Relay, and Base areas. Several
target vehicles are “hidden” among a number of civilian (e.g.
neutral) vehicles in the surveillance area, and the overall
mission objective is to continuously search for, and subse-
quently track, these target vehicles. Furthermore, there is an
additional requirement that the communication area must be
occupied by an agent whenever one or more agents are in the
surveillance area, in order to relay communications to/from
the base. Accomplishing these objectives is complicated
by stochastic sensor, actuator and fuel dynamics. Thus, as
fuel depletes and as failures or other health degradations
occur, these agents must return to base for refueling and/or
repair, potentially causing a “gap” in the coverage of the
surveillance and/or communication areas. To prevent this
gap, the agents must coordinate their actions to proactively
anticipate failures and fuel-consumption.

Furthermore, each agent has a non-zero probability of
experiencing sensor failure or actuator degradation, which
may reduce their capabilities to below that which is required
to perform certain aspects of the mission. For instance, an
agent with a failed sensor can no longer perform search or
track tasks in the surveillance area. However, it can still
perform the duty of communication relay. Similarly, an agent
with a damaged actuator, though still capable, becomes less
effective at searching, tracking, or acting as a communication
relay and therefore receives a slightly higher cost if assigned
to perform such duties. All health infringements (fuel deple-
tion, sensor failures and actuator degradations) are repaired
once the agent returns to the base location. Further details
regarding the stochastic health models employed are found
in Section III.

III. PROBLEM FORMULATION

In this section, we formulate the PST mission described
above (see Section II) in a new fashion that seeks to tame this

exponential explosion by allowing each agent to model all of
its teammates in an aggregated, approximate sense. We first,
however, offer a brief background covering MDPs, multi-
agent MDPs (MMDPs), decentralized MDPs (Dec-MDPs)
and decentralized multi-agent MDPs (Dec-MMDPs).

A. Markov Decision Process (MDP)

An infinite-horizon, discounted MDP is specified by the
following tuple: < S, A, P,g,a >, where S is the state
space, A is the action space, P;;(u) gives the probability of
transitioning into state j € S from state ¢ € S having taken
action u € A, and g(i,u) gives the cost of taking action a
in state s. We assume that the model, P, is known. Future
costs are discounted by a factor 0 < a < 1. The outcome,
e.g. solution, is a policy, denoted by p : S — A, and is a
mapping of states to actions. Given the MDP specification,
the policy is found by minimizing the cost-to-go function J,,
over the set of admissible policies II, as shown here:

iakgm,u(ik))] ,

k=0

) — i E
min Jy, (io) = min

where i is the initial state and 7; denotes the state at time
k. The cost-to-go for a fixed policy p satisfies the Bellman
equation [5]

Ju(8) = g(i, (@) + a3 Py(p@)Ju() VieS, ()

j€s
which can also be expressed compactly as J,, = T}, .J,,, where
T,, is the (fixed-policy) dynamic programming operator [4].

B. Multi-Agent MDP (MMDP)

A multi-agent Markov decision process (MMDP) gener-
alizes the above MDP to multi-agent, cooperative scenarios.
An MMDP is represented by essentially the same tuple, but
with the addition of n to indicate the number of participating
agents. As S now represents the joint state space of all agents
and A the joint action space, it follows that s € Sand a € A
now denote a joint state and a joint action. As a result, the
policy becomes a mapping of joint states to joint actions. In
an MMDP, each agent has individual full observability of the
joint state. This means that each agent can itself observe the
full, joint state and an observation model is not necessary.
However, computational complexity scales exponentially in
the number of agents, making it a poor choice for planning
in large teams.

C. Decentralized MDP (Dec-MDP)

Relaxing individual full observability just a notch, we
arrive at joint full observability, which means that the
combined observations of all agents can represent the full
joint state. A decentralized Markov decision process (Dec-
MDP) is a generalization of the MMDP in the sense that
local full observability is relaxed to joint full observability.
Technically, a Dec-MDP is specified by the following tuple:
<n,S, A, P, g,a, Z 0 >, where n is the number of agents,
S is again the joint state space, A is again the joint action
space, P(s’|s,a) again gives the probability of transitioning

6012

to joint state s’ when starting from joint state s and taking
joint action a, and g¢(s,a) again gives the cost of taking
action a from state s. New to this formulation however, are
the set Z and the model O. The set Z contains all joint
observations and the model O(z|s,a) gives the probability
of receiving joint observation z € Z given joint state s and
action a. Under the assumption of joint full observability, for
each joint state-action pair there exists a joint observation
z={z1...2,} such that O(z|s,a) = 1.

D. Decentralized MMDP (Dec-MMDP)

The MMDP and Dec-MDP inherently capture all inter-
agent coupling, at the cost of exhaustively enumerating the
joint state- and action-space, but do not scale well in the
number of agents. Motivated by the need to construct and
adapt planner output in as close to real-time as possible,
previous work has considered alternate problem formulations
where approximations were introduced in the formulation
itself, rather than applied to the solution approach, e.g.
decentralized sparse-interaction MDPs [15] and decentral-
ized multi-agent MDPs (Dec-MMDPs) [16]. A Dec-MMDP
requires individual full observability and in return provides
an action for a single agent based on its local state and
an abstraction/approximation of each of its teammate’s local
state-action spaces. By doing so, the Dec-MMDP provides
the flexibility for the problem designer to control the inherent
trade-off between problem size (i.e. solution speed) and the
level of inter-agent coupling captured in the formulation (i.e.
solution optimality), based on how this teammate abstrac-
tion/approximation is implemented (see also [16]).

IV. GROUP AGGREGATE DEC-MMDP
(GA-DEC-MMDP)

This section provides the details of a novel decentralized
approximate modelling approach for scalable cooperative
planning. In the previous decentralized approximation Dec-
MMDP (see [16]), each agent represented its teammates
with a reduced-dimensional model, generated using state
aggregation on the full model. The focus of this section is
to extend this approach and allow each agent to approximate
all of its teammates as a group with a single, reduced model.
This model is generated using aggregation techniques on the
joint state-action space of the teammates. The motivation for
this approach comes from the decision-making perspective of
an individual agent: that as long as someone satisfies mission
goals/constraints, it does not need to know specifically who,
or how. Thus, the aggregated state of all of an agent’s
teammates is reduced to a combination of features, such
as the total number of agents in surveillance area, etc. The
particular advantage of this formulation is that the growth of
the size of the state space can be made linear in the number
of agents, rather than exponential.

A GA-Dec-MMDP is a tuple < n,S, A, P, g,a, p"=* >
where n is the number of agents, S and A are again the
state and action spaces and P;;(u) again gives the transition
probability from state ¢ to state j under action u. As before,
g(i,u) gives the cost of taking action u in state ¢ and future

costs are still discounted by a factor 0 < a < 1 and p"=!
remains a fixed policy that results from a single-agent MDP.
The differences are in how S, A and P are constructed,
which is outlined in the following sections where the com-
ponents of the GA-Dec-MMDP are formulated for agent ¢,
with its set of teammates denoted as Q = {1...n} \ {i}.

A. Single-agent Policy ;=1

"= is a fixed policy that is the result of formulating and
solving a single-agent MDP where S is S; from IV-B, A is
identical to IV-C, P is P; from IV-D and ¢ is modified to
remove the communication relay requirement.

B. State Space S

In the GA-Dec-MMDP formulation, the state space is
factored as S = S; x Sq, where S; denotes the local state
of agent ¢ and S, represents the collective state-action space
for all of agent ¢’s teammates, or the group-aggregate state.

For the PST mission, the local state of each agent is given
by three scalar variables describing the agent’s location,
fuel remaining and health status. The location of agent
is denoted as y;,

yi €{YB,Yc,Ys} 2

where Yp is the Base area, Y is the Communication Relay
area, and Yy is the Surveillance area shown in Figure 1.
Similarly, the fuel state of agent i, f;, is described by a
discrete set of possible fuel quantities,

fi € {0,Af,2Af, ..., Fraw — Af, Fruaa } 3)

where Af is an appropriate discrete fuel quantity. Agent ’s
health status, h;, is described by a discrete set of possible
health states, given by

hi S {Hnmru Hsns; Hact} (4)

where H,om, Hsns and H,q; respectively represent nominal
health, a failed sensor and a damaged actuator. Combining
these parts, an agent’s local state space, S;, is defined by the
cross product of the states y;, f; and h;, which yields

Si = [yi X fi x hy]

The purpose of the group aggregate state, Sq, is to
compactly represent all of agent i’s teammates. Although the
content of Sg is problem-dependent, the objective function
provides a guideline for its construction. For example, in the
PST mission, the objective is to So, to avoid enumerating all
possible combinations of y;, f; and h; for each teammate,
agent ¢ aggregates the state-action spaces of its teammates
into a set of features using ¢

Sa = ¢(Si;), Vi € Q, &)

where S;; is agent 7’s representation of agent j’s local state-
action space and ¢ is a function that extracts information rel-
evant to the inter-agent coupling in the cost function. In this
sense, ¢ is very similar to the features used in approximate
dynamic programming [5] to quantize problems with large
state spaces. In this paper, ¢ simply extracts the expected

6013

location of each teammate at the next timestep. Forward
propagation of the state of each teammate is accomplished
using agent ¢’s perception of their local state and agent i’s
non-cooperative policy 4"='. In other words, agent 7 predicts
each teammate’s action based on what he would do if his
teammate’s local state were his own. Agent ¢ then evaluates
these predicted teammate states against elements of his local
cost function to construct S. Hence, the aggregate state is
written as

0 0

0 n—1
So=[Mmsoxnl =] "y 6)

i n - 2

where n. denotes the number of teammates in the communi-
cation area and ng € {0, n—1} the number of teammates in
the surveillance area. I, ~q) € {0, 1} is an indicator func-
tion on whether the communication requirement is satisfied.
The system state vector x for this formulation is given by
x = [y; fi hi, Sal]. The size of the state space is found
by counting all possible realizations of the state vector X,
yielding |S| = (|Y| x |F| x |H]) x |Sq|, which scales linearly
in n as |Y|, |F|, and |H| are constants and |Sq| = 2n.

C. Action Space A

The control space differs from the centralized formulation
in that here it is for a single agent. However, even if the
control space were joint, since the construction of the state
space allows for approximating teammate states, it cannot be
guaranteed that the actions agent 7 chooses for his teammates
will be the same actions they will choose for themselves.
Otherwise, the actions available to each agent in general
are v € {—1, 0, + 1}, which correspond to {“Toward
Base”, “Stay”, “Away from Base”} respectively. However,
the specific controls u; available for the i*" agent depend
on the agent’s current location y; and its remaining fuel f;,
according to the following rules:

{-1,0, +1}, ify; =Yc

{_17 0}7 if Yi :YS
i . 7
e {07 + 1}, if Yi = YB ()

The total system action vector u for the decentralized for-
mulation is simply u = wu,, leaving the size of the action
space |A| = (|u;]).

D. State Transition Model P

The state transition model P captures the qualitative
description of the dynamics of the state, given an action.
As the state is divided into S; and Sg, transitions for each,
P; and P, are given.

1) Local State Transitions, P;: The model for agent
location y; is deterministic and is described by the rules:

yi(k), if: fi=0

YB7 if: yz(k') = YvB7 ul(k:) = 0

Yz, if: yi(k) = Yo, ui(k) = -1

Ye, if: yi(k) = Ye, ui(k) =0

vilk+1) = Yo, if: y§k§ =Yz, ugki —y @

Yc, if: yb(k) = Ys, ub(k:) =-1

Ys, if: yl(k‘) = Ys, ul(k) =0

Ys, if: yi(k) = Yo, ui(k) = +1

The dynamics for the fuel state f; are stochastic with
parameter py representing the probability of burning fuel at
the nominal rate of one Af per timestep. Specifically, f;
evolves according to the following rules:

0, it: fi(k) =0
X _ Fmaz, lf Yi (k) = YB
D=0 00— AF wibiop if (k) £Ys O

Jilk) =2Af, wi Pr(l —py) if yi(k) # YB

The health state of each agent is also a stochastic model
with parameters p; and p, representing the probability of a
sensor failure, and actuator damage respectively. This health
model evolves according to the following rules:

hz(k)7 if fz =0
Huom, ifyi(k) =Y
hi(k+1) =< Hpom, W/ Pr(l —ps —pa) if hi(k) = Hnom
Hspns, W/ Pr(ps) if hi(k) = Hpom
Hact, W/ Pr(pg) if hi(k) = Hnom

(10)
2) Feature Transitions, Pg: Since feature transitions
strongly depend on the accuracy of p"=! and other agents
actual actions, straightforward calculation of P is usually
not possible. In order to circumvent this problem, a look-up
table that quantitatively describes the transition probabilities
between all realizations of S, was generated by evaluating
state trajectories recorded while running the PST mission
with n = 5 agents under a Dec-MMDP formulation [16].
Transferring this quantitative approximation to cases with
more agents (cases intractable for MMDP and Dec-MMDP)
is not immediately clear. One approach is gleaned from the
image processing literature, as scaling the empirical look-up
table is essentially the same problem as zooming in on an
image. As visualized in Figure 2, bicubic interpolation was
used to empirically estimate the transition probabilities for
cases where n = 5 (left) to n = 10 (right). Darker areas
indicate higher probability and each row sums to 1.

E. Cost Function g

The cost function g(x,u) in the decentralized case is set
up to penalize any undesirable outcomes in the mission.
However, the presence of approximations in forming Sq
remove some of the reward coupling between agents and
cannot therefore “peak” into future possibilities the way the
centralized problem can.

Cuny + CrotNmot + CsnsMsns + (11)
Cs(n—1—ng) + C. (1 — I[nc>0]) + Cypng

g(x,u) =

6014

Py forn=5 P, for n =6, interpolated from n = 5

P, for n =8, interpolated from n = 5 P, forn =10, interpolated from n =5

5,0

.0

T 2 3 4 5 6 7 8 9 T 2 3 4 5 6 7 8 9 1 1
Sy(kel) Syk+l)

Fig. 2.
higher probability and each row sums to 1.

107

: :
——S=|LxFxH|" (MMDP)
—— S =|LxFxH|x|g"* (Dec-MMDP)
101 — S =|Lx FxHxQ(n)| (GA-Dec-MMDP) i
)
0
2
8
@ g0l |
k]
b
I
Qo
£ .
Sl Online-Solvable_ _ _ _ _ _ __
100 I I I I I I I I
3 4 5 6 7 8 9 10
Number of Agents
Fig. 3. As the number of agents n increases, the resulting state space,

and therefore also the computational complexity associated with calculating
a solution, can grow exponentially and the choice of planning algorithm
becomes critical. Note, the y-axis is log scale.

where C, are costs associated with the following numbers:
ny, € {0, 1} denotes agent movement, N, € {0, 1}
indicates if the agent is in the task area with a degraded
motor, ns,s € {0, 1} indicates if the agent is in the task
area with failed sensor, n, € {0, n} denotes the number of
capable agents in the surveillance area, n. € {0, n} denotes
the number of agents in the communication area, and nx is
the number of agents that have run out of fuel (crashed).

V. SIMULATION RESULTS

The objective of the simulation is as described in Section
II, to maintain communication between Base and Surveil-
lance areas and to keep as many capable agents in the
Surveillance area as possible.

Monte Carlo style simulations of the full, stochastic PST
mission were run in this environment for several planning
approaches, including: A non-cooperative approach; a state-
dependent heuristic; a fully centralized MMDP (for the case
of n = 3 only); a Dec-MMDP as given in Ref [16]; and a
GA-Dec-MMDP, as formulated in IV.

First, the non-cooperative approach simulates each agent
acting for itself only and is included as benchmark to allow
a more complete understanding of the costs incurred by the
cooperative planners. Second, the state-dependent heuristic
represents the type of behaviour a human operator might
encode for an unmanned agent in the PST mission. Heuristic
policy simply sends n — 1 UAVs to surveillance area while
reserving one UAV for communication purposes. Then it
calls a UAV backs to base whenever its fuel level is below
some constant threshold.

.0

5,0

10 12 14 16
Sy(k+1)

2 4 6 8 12 14 2 4 6 8 18
Sy(k+1)

Bicubic interpolation of the empirically-determined transition probabilities for P from n = 5 (left) to n = 10 (right). Darker areas indicate

The other three planners up for comparison are MDP-
based, and as this research focuses on problem formulation
rather than on particular solution approaches, all solutions
were computed using exact value-iteration, which is known
to be O(|S|?|A|) [5]. Because of this, we can use the term
“computationally complexity” in lieu of “state-space size”.
With this is mind, Figure 3 shows how the computational
complexity of these three MDP-based planners grows as the
number of agents increases. Note, the y-axis of the figure is
log-scale and shows the exponential growth in n of MMDPs
and Dec-MMDPs. The GA-Dec-MMDP formulation how-
ever, remains linear in n.

For the PST mission scenario simulations, the following
parameters were used: Af = 1, Fp,,, = 10, py = 0.50,
pe = 0.05, ps = 0.10. The simulations were run on a
64-bit quad-core Intel Xeon 3.33GHz CPU running Ubuntu
11.04 with GCC 4.5 and 12 Gb of RAM. For the cases
where n is greater than three, the MMDP approach is
simply not tractable, having more than 25 million states
when n = 4. Therefore, comparisons beyond n = 3
do not include MMDP results. Similarly, the Dec-MMDP
approach remains computationally tractable until n 5
agents, beyond which it too becomes intractable. The GA-
Dec-MMDP approach however, remains tractable through
n = 10. We therefore compare GA-Dec-MMDP with the
non-cooperative and state-dependent heuristic approaches for
cases when n > 5.

After ensuring identical starting conditions, each planner
was simulated for 500 steps, 50 times each, logging the joint
state trajectories for each system. Using these state histories,
the average cumulative return for each planner was calculated
using an evaluation cost function described by

Ce(1=Tp,50) + Cs(n—1-ny) (12)

9(x)
where n s is the number of capable agents in the surveillance
area and n, is the number of agents in the communication
area. Figure 4 compares the scores of the different planners
for the case of three agents (n 3). As expected, the
MMDP results in the minimum cost solution, while the
Dec-MMDP and GA-Dec-MMDP approximations are within
10% and 20% respectively. As the non-cooperative and state-
dependent heuristic approaches result in much higher cost,
and Figure 5 removes them for a closer look at the MDP-
based strategies alone.

Scaling up now to n = 10, Figure 6 shows how the cu-
mulative cost scales with the number of participating agents.

6015

4000 T T T T T

- Non-cooperative
3 3000- Heuristic 4
(@] — GA-Dec-MMDP
2 Dec-MMDP
g 2000r —— o]
S
E 1000]- —
o
o e ——— !
_ 400 ! ! .
g
% //AN
& 200¢ B
3
o
O o0 T :
0 50 100 150 200 250 300 350 400 450 500
Steps
Fig. 4. Comparison of cumulative costs over a 500 step stochastic PST

mission for the case of three agents (n = 3). As expected, the non-
cooperative solution scores poorly while the MDP-based solutions provide
the lowest cost solutions.

1400 T T
12001 = GA-Dec-MMDP

1000 Dec-MMDP
[—— mmDP -
800 R
600 B
400 1
200 B
0

Cumulative Cost

w
S

N
[S]
L

=)
L

Cost Gap (%)
5

. | | . | . | . |
50 100 150 200 250 300 350 400 450 500
Steps

|
N
)

<)

Fig. 5. Removing the non-cooperative and heuristic-based approaches
allows a clearer comparison of the cumulative costs over a 500 step mission
for the case of three agents between the MDP-based methods only. As seen,
Dec-MMDP results in roughly 10% higher cost than the MMDP while GA-
Dec-MMDP yields approximately 20% higher cost.

0
2><10‘

T T T T T T T
~—®— Non-cooperative

[Heuristic

1.6} —®— GA-Dec-MMDP

—®— Dec-MMDP

18

14 —e—mMmMDP 7
o
O 12t 4
3
2 1 |
o
2 o8} 1
=
O o06f 4
041 4
0.2 4
0 |
3 4 5 6 7 8 9 10
Number of Agents

Fig. 6. Comparison of resulting cumulative cost after a 500 step stochastic
PST mission as a function of the number of participating agents. GA-Dec-
MMDP (red) remains the lowest cost tractable solution through n = 10
agents.

While we cannot compare with the centralized MMDP or
Dec-MMDP in these cases, the main point of this figure
is to show that the cumulative cost of the GA-Dec-MMDP
approximation consistently results in a much lower cost than
the heuristic approach.

VI. CONCLUSIONS

This paper introduced an approximation algorithm for
stochastic multi-agent planning based on MDPs. The core
idea behind the algorithm was to allow each agent to main-
tain its own planner that approximates the representation of
its teammates, while fully enumerating its local state and
action spaces. The focus of this paper is an extension to
previous work that aggregates all teammates into a single,
abstracted entity. Under the persistent search & track mission
scenario, we showed that while performance is approxi-
mately 20% of that obtained by the centralized solution, the

problem size is only linear in n, which is a very attractive
feature when planning online for large multi-agent teams.

ACKNOWLEDGMENTS

This research was generously supported by Boeing Research &
Technology in Seattle, WA and in part by AFOSR grant FA9550-
09-1-0522. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of
the Air Force Office of Scientific Research or the U.S. Government.

REFERENCES

[1] M. Valenti, B. Bethke, J. P. How, D. P. de Farias, and J. Vian,
“Embedding Health Management into Mission Tasking for UAV
Teams,” in American Control Conference (ACC), New York
City, NY, 9-13 July 2007, pp. 5777-5783. [Online]. Available:
http://acl.mit.edu/papers/acc_hlth_.mgmt_2007_mv_v0.pdf
B. Bethke, J. P. How, and J. Vian, “Group health management
of UAV teams with applications to persistent surveillance,” in
American Control Conference (ACC), Seattle, WA, 11-13 June
2008, pp. 3145-3150. [Online]. Available: http://acl.mit.edu/papers/
acc-fuel-2008-bbethke.pdf
[3] ——, “Multi-UAV Persistent Surveillance With Communication Con-
straints and Health Management,” in AIAA Guidance, Navigation, and
Control Conference (GNC), August 2009, (AIAA-2009-5654).

[2

—

[4] R. Bellman, Dynamic Programming. Dover Publications, March
2003.
[5] D. Bertsekas, Dynamic Programming and Optimal Control. Belmont,

MA: Athena Scientific, 2007.

[6] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators,
L. Busoniu, R. Babuska, B. DeSchutter, and D. Ernst, Eds. CRC
Press, 2010.

[7]1 B. M. Bethke, “Kernel-based approximate dynamic programming
using bellman residual elimination,” Ph.D. dissertation, Massachusetts
Institute of Technology, Department of Aeronautics and Astronautics,
Cambridge MA, February 2010. [Online]. Available: http://acl.mit.
edu/papers/BethkePhD.pdf

[8] S. Seuken and S. Zilberstein, “Formal models and algorithms for
decentralized decision making under uncertainty,” Autonomous Agents
and Multiagent Systems, vol. 17, no. 2, pp. 190-250, 2008.

[9] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Mathematics of Operation Research, vol. 27, no. 4, pp. 819-840, 2002.

[10] C. V. Goldman and S. Zilberstein, “Decentralized control of coop-
erative systems: Categorization and complexity analysis,” Journal of
Artificial Intelligence Research, vol. 22, pp. 143-174, 2004.

[11] M. Allen and S. Zilberstein, “Complexity of decentralized control:
Special cases,” in Annual Conf. on Neural Information Processing
Systems, 2009.

[12] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman, “Transition-
independent decentralized Markov decision processes,” in Proceedings
of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems. ACM, 2003, pp. 41-48.

[13] V. L. Ping Xuan and S. Zilberstein, “Communication decisions in
multi-agent cooperation: Model and experiments,” in Proceedings of
the fifth international conference on Autonomous agents, 2001.

[14] M. S. Spaan, G. J. Gordon, and S. Zilberstein, “Decentralized planning
under uncertainty for teams of communicating agents,” in Proceedings
of the fifth international joint conference on Autonomous agents and
multiagent systems, 2006.

[15] F. S. Melo and M. Veloso, “Decentralized mdps with sparse interac-
tions,” Artificial Intelligence, vol. 175, pp. 1757-1789, 2011.

[16] J. D. Redding, T. Toksoz, N. K. Ure, A. Geramifard, J. P. How,
M. Vavrina, and J. Vian, “Persistent distributed multi-agent missions
with automated battery management,” in AIAA Guidance, Navigation,
and Control Conference (GNC), August 2011, (AIAA-2011-6480).

[17] B. Bethke, J. P. How, and J. Vian, “Multi-UAV Persistent Surveillance
With Communication Constraints and Health Management,” in AIAA
Guidance, Navigation, and Control Conference (GNC), August 2009,
(ATAA-2009-5654).

6016

