
Abstract Data Types
 Some authors describe object-oriented programming as programming abstract data
types and their relationships. Within this section we introduce abstract data types as a
basic concept for object-orientation and we explore concepts used in the list example
of the last section in more detail.

3.1 Handling Problems
The first thing with which one is confronted when writing programs is the problem.
Typically you are confronted with ``real-life'' problems and you want to make life
easier by providing a program for the problem. However, real-life problems are
nebulous and the first thing you have to do is to try to understand the problem to
separate necessary from unnecessary details: You try to obtain your own abstract
view, or model, of the problem. This process of modeling is called abstraction and is
illustrated in Figure 3.1.

Figure 3.1: Create a model from a problem with abstraction.

The model defines an abstract view to the problem. This implies that the model
focusses only on problem related stuff and that you try to define properties of the
problem. These properties include

• the data which are affected and
• the operations which are identified

by the problem.

As an example consider the administration of employees in an institution. The head of
the administration comes to you and ask you to create a program which allows to

administer the employees. Well, this is not very specific. For example, what employee
information is needed by the administration? What tasks should be allowed?
Employees are real persons who can be characterized with many properties; very few
are:

• name,
• size,
• date of birth,
• shape,
• social number,
• room number,
• hair colour,
• hobbies.

Certainly not all of these properties are necessary to solve the administration problem.
Only some of them are problem specific. Consequently you create a model of an
employee for the problem. This model only implies properties which are needed to
fulfill the requirements of the administration, for instance name, date of birth and
social number. These properties are called the data of the (employee) model. Now
you have described real persons with help of an abstract employee.

Of course, the pure description is not enough. There must be some operations defined
with which the administration is able to handle the abstract employees. For example,
there must be an operation which allows you to create a new employee once a new
person enters the institution. Consequently, you have to identify the operations which
should be able to be performed on an abstract employee. You also decide to allow
access to the employees' data only with associated operations. This allows you to
ensure that data elements are always in a proper state. For example you are able to
check if a provided date is valid.

To sum up, abstraction is the structuring of a nebulous problem into well-defined
entities by defining their data and operations. Consequently, these entities combine
data and operations. They are not decoupled from each other.

3.2 Properties of Abstract Data Types
The example of the previous section shows, that with abstraction you create a well-
defined entity which can be properly handled. These entities define the data structure
of a set of items. For example, each administered employee has a name, date of birth
and social number.

The data structure can only be accessed with defined operations. This set of
operations is called interface and is exported by the entity. An entity with the
properties just described is called an abstract data type (ADT).

Figure 3.2 shows an ADT which consists of an abstract data structure and operations.
Only the operations are viewable from the outside and define the interface.

Figure 3.2: An abstract data type (ADT).

Once a new employee is ``created'' the data structure is filled with actual values: You
now have an instance of an abstract employee. You can create as many instances of
an abstract employee as needed to describe every real employed person.

Let's try to put the characteristics of an ADT in a more formal way:

Definition (Abstract Data Type) An abstract data type (ADT) is characterized by the
following properties:

1.
It exports a type.

2.
It exports a set of operations. This set is called interface.

3.
Operations of the interface are the one and only access mechanism to the
type's data structure.

4.
Axioms and preconditions define the application domain of the type.

With the first property it is possible to create more than one instance of an ADT as
exemplified with the employee example. You might also remember the list example
of chapter 2. In the first version we have implemented a list as a module and were
only able to use one list at a time. The second version introduces the ``handle'' as a
reference to a ``list object''. From what we have learned now, the handle in
conjunction with the operations defined in the list module defines an ADT List:

1.
When we use the handle we define the corresponding variable to be of type
List.

2.
The interface to instances of type List is defined by the interface definition
file.

3.
Since the interface definition file does not include the actual representation of
the handle, it cannot be modified directly.

4.
The application domain is defined by the semantical meaning of provided
operations. Axioms and preconditions include statements such as

• ``An empty list is a list.''
• ``Let l=(d1, d2, d3, ..., dN) be a list. Then l.append(dM) results in

l=(d1, d2, d3, ..., dN, dM).''
• ``The first element of a list can only be deleted if the list is not empty.''

However, all of these properties are only valid due to our understanding of and our
discipline in using the list module. It is in our responsibility to use instances of List
according to these rules.

Importance of Data Structure Encapsulation
The principle of hiding the used data structure and to only provide a well-defined
interface is known as encapsulation. Why is it so important to encapsulate the data
structure?

To answer this question consider the following mathematical example where we want
to define an ADT for complex numbers. For the following it is enough to know that
complex numbers consists of two parts: real part and imaginary part. Both parts are
represented by real numbers. Complex numbers define several operations: addition,
substraction, multiplication or division to name a few. Axioms and preconditions are
valid as defined by the mathematical definition of complex numbers. For example, it
exists a neutral element for addition.

To represent a complex number it is necessary to define the data structure to be used
by its ADT. One can think of at least two possibilities to do this:

• Both parts are stored in a two-valued array where the first value indicates the
real part and the second value the imaginary part of the complex number. If x
denotes the real part and y the imaginary part, you could think of accessing
them via array subscription: x=c[0] and y=c[1].

• Both parts are stored in a two-valued record. If the element name of the real
part is r and that of the imaginary part is i, x and y can be obtained with: x=c.r
and y=c.i.

Point 3 of the ADT definition says that for each access to the data structure there must
be an operation defined. The above access examples seem to contradict this
requirement. Is this really true?

Let's look again at the two possibilities for representing imaginary numbers. Let's
stick to the real part. In the first version, x equals c[0]. In the second version, x equals
c.r. In both cases x equals ``something''. It is this ``something'' which differs from the
actual data structure used. But in both cases the performed operation ``equal'' has the
same meaning to declare x to be equal to the real part of the complex number c: both
cases archieve the same semantics.

If you think of more complex operations the impact of decoupling data structures
from operations becomes even more clear. For example the addition of two complex
numbers requires you to perform an addition for each part. Consequently, you must
access the value of each part which is different for each version. By providing an

operation ``add'' you can encapsulate these details from its actual use. In an
application context you simply ``add two complex numbers'' regardless of how this
functionality is actually archieved.

Once you have created an ADT for complex numbers, say Complex, you can use it in
the same way like well-known data types such as integers.

Let's summarize this: The separation of data structures and operations and the
constraint to only access the data structure via a well-defined interface allows you to
choose data structures appropriate for the application environment.

3.3 Generic Abstract Data Types
ADTs are used to define a new type from which instances can be created. As shown
in the list example, sometimes these instances should operate on other data types as
well. For instance, one can think of lists of apples, cars or even lists. The semantical
definition of a list is always the same. Only the type of the data elements change
according to what type the list should operate on.

This additional information could be specified by a generic parameter which is
specified at instance creation time. Thus an instance of a generic ADT is actually an
instance of a particular variant of the ADT. A list of apples can therefore be declared
as follows:

 List<Apple> listOfApples;

The angle brackets now enclose the data type for which a variant of the generic ADT
List should be created. listOfApples offers the same interface as any other list, but
operates on instances of type Apple.

3.4 Notation
As ADTs provide an abstract view to describe properties of sets of entities, their use is
independent from a particular programming language. We therefore introduce a
notation here which is adopted from [3]. Each ADT description consists of two parts:

• Data: This part describes the structure of the data used in the ADT in an
informal way.

• Operations: This part describes valid operations for this ADT, hence, it
describes its interface. We use the special operation constructor to describe
the actions which are to be performed once an entity of this ADT is created
and destructor to describe the actions which are to be performed once an
entity is destroyed. For each operation the provided arguments as well as
preconditions and postconditions are given.

As an example the description of the ADT Integer is presented. Let k be an integer
expression:

ADT Integer is
Data

A sequence of digits optionally prefixed by a plus or minus sign. We refer to
this signed whole number as N.
Operations
constructor
Creates a new integer.
add(k)
Creates a new integer which is the sum of N and k.

Consequently, the postcondition of this operation is sum = N+k. Don't confuse
this with assign statements as used in programming languages! It is rather a
mathematical equation which yields ``true'' for each value sum, N and k after
add has been performed.

sub(k)
Similar to add, this operation creates a new integer of the difference of both
integer values. Therefore the postcondition for this operation is sum = N-k.
set(k)
Set N to k. The postcondition for this operation is N = k.
...

end

The description above is a specification for the ADT Integer. Please notice, that we
use words for names of operations such as ``add''. We could use the more intuitive
``+'' sign instead, but this may lead to some confusion: You must distinguish the
operation ``+'' from the mathematical use of ``+'' in the postcondition. The name of
the operation is just syntax whereas the semantics is described by the associated pre-
and postconditions. However, it is always a good idea to combine both to make
reading of ADT specifications easier.

Real programming languages are free to choose an arbitrary implementation for an
ADT. For example, they might implement the operation add with the infix operator
``+'' leading to a more intuitive look for addition of integers.

3.5 Abstract Data Types and Object-
Orientation
ADTs allows the creation of instances with well-defined properties and behaviour. In
object-orientation ADTs are referred to as classes. Therefore a class defines properties
of objects which are the instances in an object-oriented environment.

ADTs define functionality by putting main emphasis on the involved data, their
structure, operations as well as axioms and preconditions. Consequently, object-
oriented programming is ``programming with ADTs'': combining functionality of
different ADTs to solve a problem. Therefore instances (objects) of ADTs (classes)
are dynamically created, destroyed and used.

