
Agile Software Development

Mohsen Afsharchi

I. Agile Software Development

• Agile software development is a group of software development
methods based on iterative and incremental development, where
requirements and solutions evolve through collaboration between self-
organizing, cross-functional teams.

– Methods

– Iterative

– incremental

• It promotes adaptive planning, evolutionary development and delivery,
a time-boxed iterative approach, and encourages rapid and flexible response
to change.

• It is a conceptual framework that promotes foreseen interactions throughout
the development cycle.

• The Agile Manifesto[introduced the term in 2001. (Wiki, 21 Aug 12)

• Let’s take this definition apart.

a. Software Development Method

• A software development methodology or
system development methodology in
software engineering is a framework that is
used to structure, plan, and control the
process of developing an information system.

b. Software Engineering / Software Development

• Software Engineering (WIKI) (SE) is the application of a
systematic, disciplined, quantifiable approach to the
design, development, operation, and maintenance of
software, and the study of these approaches; that is, the
application of engineering to software.

• Software Development, a much used and more generic
term, does not subsume the engineering paradigm.
– The field's future looks bright according to Money Magazine and

Salary.com, which rated "software engineer" as the best job in
the United States in 2006.

– In 2012, software engineering was again ranked as the best job
in the United States, this time by CareerCast.com.

c. Information System

• An information system (IS) - is any combination of
information technology (IT) and people's activities that
support operations, management and decision making.

• In a very broad sense, the term information system is
frequently used to refer to the interaction between people,
processes, data and technology.

• In this sense, the term is used to refer
– not only to the information and communication technology

(ICT) that an organization uses,
– but also to the way in which people interact with this

technology in support of business processes. (Wiki)

d. Iterative and Incremental Development
Iterative and Incremental development is at the heart
of a cyclic software development process developed in
response to the weaknesses of the waterfall model.

 It starts with an initial planning and ends with
 deployment with the cyclic interactions in between.

Iterative and incremental development are essential
parts of the Rational Unified Process, Extreme
Programming and generally the various agile software
development frameworks.

It follows a similar process to the “plan-do-check-act”
cycle of business process improvement.

e. Time-Boxed Approach

• In time management, a time box allots a

fixed period of time for an activity.

• Timeboxing plans activity by allocating time

boxes.

http://en.wikipedia.org/wiki/Time

2. Introductory Thoughts

• Fears regarding software development led to a
number of pioneers / industry experts to
develop the Agile Manifesto based up some
firm values and principles.

• Practitioners had become afraid that repeated
software failures could not be stopped
without some kind of guiding process to guide
development activities.

Common Fears

• Practitioners were afraid that

– The project will produce the wrong product

– The project will produce a product of inferior
quality

– The project will be late

– We’ll have to work 80 hour weeks

– We’ll have to break commitments

– We won’t be having fun.

Agile Alliance

• Several individuals, The Agile Alliance,

– motivated to constrain activities

– such that certain outputs and artifacts are
predictably produced.

– Around 2000, these notables got together to
address common development problems.

• Goal: outline values and principles to allow
software teams to

– develop quickly and

– respond to change.

• These activities arose in large part to runaway
processes.
– Failure to achieve certain goals was met with ‘more

process.’ Schedules slipped; budgets bloated, and
processes became even larger.

• The Alliance (17) created a statement of values:
termed the manifesto of the Agile Alliance.

• They then developed the 12 Principles of Agility.

Manifesto for Agile Software
Development

• “We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to the value:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

That is, while there is value in the items on the right, we
value the items on the left more.”

Let’s look at these values to discern exactly what is meant.

Value 1: Individuals and Interactions
over Processes and Tools

• Strong players: a must, but can fail if don’t work together.
• Strong player: not necessarily an ‘ace;’ work well with others!

– Communication and interacting is more important than raw talent.

• ‘Right’ tools are vital to smooth functioning of a team.
• Start small. Find a free tool and use until you can demo you’ve

outgrown it. Don’t assume bigger is better. Start with white
board; flat files before going to a huge database.

• Building a team more important than building environment.
– Some managers build the environment and expect the team to fall

together.
– Doesn’t work.
– Let the team build the environment on the basis of need.

Value 2: Working Software over
Comprehensive Documentation

• Code – not ideal medium for communicating rationale and
system structure.

– Team needs to produce human readable documents describing
system and design decision rationale.

• Too much documentation is worse than too little.

– Take time; more to keep in sync with code; Not kept in
sync? it is a lie and misleading.

• Short rationale and structure document.

– Keep this in sync; Only highest level structure in the
system kept.

Value 2: Working Software over
Comprehensive Documentation

• How to train newbees if short & sweet?

– Work closely with them.

– Transfer knowledge by sitting with them; make part of team via
close training and interaction

• Two essentials for transferring info to new team members:

– Code is the only unambiguous source of information.

– Team holds every-changing roadmap of systems in their heads;
cannot put on paper.

– Best way to transfer info- interact with them.

• Fatal flaw: Pursue documentation instead of software:

• Rule: Produce no document unless need is immediate and
significant.

Value 3: Customer Collaboration over
Contract Negotiation (1 of 2)

• Not possible to describe software requirements
up front and leave someone else to develop it
within cost and on time.

• Customers cannot just cite needs and go away

• Successful projects require customer feedback
on a regular and frequent basis – and not
dependent upon a contract or SOW.

Value 3: Customer Collaboration over
Contract Negotiation (2 of 2)

• Best contracts are NOT those specifying requirements,
schedule and cost.
– Become meaningless shortly.

• Far better are contracts that govern the way the
development team and customer will work together.

• Key is intense collaboration with customer and a
contract that governed collaboration rather than details
of scope and schedule
– Details ideally not specified in contract.
– Rather contracts could pay when a block passed customer’s

acceptance tests.
– With frequent deliverables and feedback, acceptance tests

never an issue.

Value 4: Responding to Change over
Following a Plan

• Our plans and the ability to respond to changes is critical!

• Course of a project cannot be predicted far into the future.
– Too many variables; not many good ways at estimating cost.

• Tempting to create a PERT or Ghant chart for whole project.
– This does Not give novice managers control.

– Can track individual tasks, compare to actual dates w/planned dates
and react to discrepancies.

– But the structure of the chart will degrade

– As developers gain knowledge of the system and as customer gains
knowledge about their needs, some tasks will become unnecessary;
others will be discovered and will be added to ‘the list.’

– In short, the plan will undergo changes in shape, not just dates.

Value 4: Responding to Change over
Following a Plan

• Better planning strategy – make detailed plans for the
next few weeks, very rough plans for the next few
months, and extremely crude plans beyond that.

• Need to know what we will be working on the next few
weeks; roughly for the next few months; a vague idea
what system will do after a year.

• Only invest in a detailed plan for immediate tasks;
once plan is made, difficult to change due to
momentum and commitment.
– But rest of plan remains flexible. The lower resolution

parts of the plan can be changed with relative ease.

Agile Principles (12)

• The following principles are those that
differentiate agile processes from others.

Principle 1: Our Highest Priority is to Satisfy the
Customer through Early and Continuous Delivery of

Valuable Software
• Number of practices have significant impact upon quality of final system:
• 1. Strong correlation between quality and early delivery of a partially

functioning system.
– The less functional the initial delivery, the higher the quality of the final

delivery.

• 2. Another strong correlation exists between final quality and frequently
deliveries of increasing functionality.
– The more frequent the deliveries, the higher the final quality.

• Agile processes deliver early and often.
– Rudimentary system first followed by systems of increasing functionality

every few weeks.
– Customers my use these systems in production, or
– May choose to review existing functionality and report on changes to be

made.
– Regardless, they must provide meaningful feedback.

Principle 2: Welcome Changing Requirements, even late in
Development. Agile Processes harness change for the
Customer’s Competitive Advantage.

• This is a statement of attitude.

• Participants in an agile process are not afraid of change.

– Requirement changes are good;

– Mean team has learned more about what it will take to satisfy
the market.

• Agile teams work to keep the software structure
flexible, so requirement change impact is minimal.

•

• Moreso, the principles of object oriented design help us
to maintain this kind of flexibility.

Principle 3: Deliver Working Software Frequently

(From a couple of weeks to a couple of months with a

preference to the shorter time scale.

• We deliver working software.
– Deliver early and often.

– Be not content with delivering bundles of
documents, or plans.

– Don’t count those as true deliverables.

• The goal of delivering software that satisfies
the customer’s needs.

Principle 4: Business People and Developers Must
Work Together Daily throughout the Project.

• For agile projects, there must be significant
and frequent interaction between the

– customers,

– developers, and

– stakeholders.

 An agile project must be continuously guided.

Principle 5: Build Projects around Motivated Individuals.
(Give them the environment and support they need, and

trust them to get the job done.)

• An agile project has people the most important factor
of success.
– All other factors, process, environment, management, etc.,

are considered to be second order effects, and are subject
to change if they are having an adverse effect upon the
people.

• Example: if the office environment is an obstacle to the
team, change the office environment.

• If certain process steps are obstacles to the team,
change the process steps.

Principle 6: The Most Efficient and Effective Method of
Conveying Information to and within a Development

Team is face-to-face Communications.

• In agile projects, developers talk to each other.
– The primary mode of communication is

conversation.

– Documents may be created, but there is no attempt to
capture all project information in writing.

• An agile project team does not demand written
specs, written plans, or written designs.
– They may create them if they perceive an immediate

and significant need, but they are not the default.

– The default is conversation.

Principle 7: Working Software is the
Primary Measure of Progress

• Agile projects measure their progress by
measuring the amount of working software.

– Progress not measusred by phase we are in, or

– by the volume of produced documentation or

– by the amount of code they have created.

• Agile teams are 30% done when 30% of the
necessary functionality is working.

Principle 8: Agile Processes promote sustainable developmt
The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

• An agile project is not run like a 50 yard dash; it is run like a
marathon.
– The team does not take off at full speed and try to maintain that

speed for the duration.
– Rather they run at a fast, but sustainable, pace.

• Running too fast leads to burnout, shortcuts, and debacle.
• Agile teams pace themselves.

– They don’t allow themselves to get too tired.
– They don’t borrow tomorrow’s energy to get a bit more done today.
– They work at a rate that allows them to maintain the highest quality

standards for the duration of the project.

Principle 9: Continuous Attention to Technical
Excellence and Good Design enhances Agility.

• High quality is the key to high speed.

– The way to go fast is to keep the software as clean
and robust as possible.

– Thus, all agile team-members are committed to
producing only the highest quality code they can.

– They do not make messes and then tell themselves
they’ll clean it up when they have more time.

– Do it right the first time!

Principle 10: Simplicity – the art of maximizing
the amount of work not done – is essential.

• Agile teams take the simplest path that is
consistent with their goals.

– They don’t anticipate tomorrow’s problems and
try to defend against them today.

– Rather they do the simplest and highest quality
work today, confident that it will be easy to
change if and when tomorrows problems arise.

Principle 11: The Best Architectures, Requirements, and
Designs emerge from Self-Organizing Teams

• An agile team is a self organizing team.
– Responsibilities are not handed to individual team

members from the outside.
– Responsibilities are communicated to the team as a whole,

and the team determines the best way to fulfill them.

• Agile team members work together on all project
aspects.
– Each is allowed input into the whole.
– No single team member is responsible for the architecture,

or the requirements, or the tests, etc.
– The team shares those responsibilities and each team

member has influence over them.

Principle 12: At regular Intervals, the Team reflects on how
to become more effective, then tunes and adjusts its

behavior accordingly.

• An agile team continually adjusts its organization,
rules, conventions, relationships, etc.

• An agile team knows that its environment is
continuously changing, and knows that they must
change with that environment to remain agile.

Conclusions
• The professional goal of every software engineer, and every

development team, is to deliver the highest possible value to our
employers and customers.
– And yet, our projects fail, or fail to deliver value, at a dismaying rate.

• Though well intentioned, the upward spiral of process inflation is
culpable for at least some of this failure.

• The principles and values of agile software development were
formed as a way
– to help teams break the cycle of process inflation, and
– to focus on simple techniques for reaching their goals.

• At the time of this writing there were many agile processes to

choose from. These include
– SCRUM,
– Crystal,
– Feature Driven Development (FDD),
– Adaptive Software Development (ADP), and most significantly,
– Extreme Programming (XP).
– Others…

