Creational Design Patterns

Mohsen Afsharchi

Definition

A design pattern is a documented best practice or core of a solution that has
been applied successfully in multiple environments to solve a problem that recurs
in a specific set of situations.

Architect Christopher Alexander describes a pattern as “a recurring solution to
a common problem in a given context and system of forces.” In his definition,
the term context refers to the set of conditions/situations in which a given pattern
is applicable and the term system of forces refers to the set of constraints that
occur in the specific context.

More about Patterns

B A design pattern is an effective means to convey/communicate what has
been learned about high-quality designs. The result is:

— A shared language for communicating the experience gained in dealing
with these recurring problems and their solutions.

— A common vocabulary of system design elements for problem solving
discussions. A means of reusing and building upon the acquired insight
resulting in an improvement in the software quality in terms of its
maintainability and reusability.

B A design pattern is not an invention. A design pattern is rather a docu-
mented expression of the best way of solving a problem that is observed
or discovered during the study or construction of numerous software
systems.

More about Patterns

M Design patterns are not theoretical constructs. A design pattern can be
seen as an encapsulation of a reusable solution that has been applied
successfully to solve a common design problem.

B Though design patterns refer to the best known ways of solving problems,
not all best practices in problem resolution are considered as patterns. A
best practice must satisfy the Rule of Three to be treated as a design
pattern. The Rule of Three states that a given solution must be verified to
be a recurring phenomenon, preferably in at least three existing systems.

Creational Patterns

B Decal with one of the most commonly performed tasks in an OO application,
the creation of objects.

B Support a uniform, simple, and controlled mechanism to create objects.

B Allow the encapsulation of the details about what classes are instantiated
and how these instances are created.

B Encourage the use of interfaces, which reduces coupling.

Creational Patterns

Factory When a client object does not know which class to

Method instantiate, it can make use of the factory method to create
an instance of an appropriate class from a class hierarchy
or a family of related classes. The factory method may be
designed as part of the client itself or in a separate class.
The class that contains the factory method or any of its
subclasses decides on which class to select and how to
instantiate it.

Singleton Provides a controlled object creation mechanism to ensure
that only one instance of a given class exists.

Abstract Allows the creation of an instance of a class from a suite of

Factory related classes without having a client object to specify the

actual concrete class to be instantiated.

Prototype Provides a simpler way of creating an object by cloning it
from an existing (prototype) object.

Builder Allows the creation of a complex object by providing the

information on only its type and content, keeping the
details of the object creation transparent to the client. This
allows the same construction process to produce different
representations of the object.

Factory Pattern

In general, all subclasses in a class hierarchy inherit the methods implemented
by the parent class. A subclass may override the parent class implementation to
offer a different type of functionality for the same method. When an application
object is aware of the exact functionality it needs, it can directly instantiate the
class from the class hierarchy that offers the required functionality.

At times, an application object may only know that it needs to access a class
from within the class hierarchy, but does not know exactly which class from
among the set of subclasses of the parent class is to be selected. The choice of
an appropriate class may depend on factors such as:

B The state of the running application
B Application configuration settings
B [Expansion of requirements or enhancements

Ordinary Design

Client

App object K~

Class Hierarchy

ParentClass

SubClass 2

JAN

SubClass 1

Problems

B Because every application object that intends to use the services offered
by the class hierarchy needs to implement the class selection criteria, it
results in a high degree of coupling between an application object and
the service provider class hierarchy.

B Whenever the class selection criteria change, every application object that
uses the class hierarchy must undergo a corresponding change.

B Because class selection criteria needs to take all the factors that could
affect the selection process into account, the implementation of an appli-
cation object could contain inclegant conditional statements,

Factory Method

the Factory Method pattern recommends encapsulating the
functionality required, to select and instantiate an appropriate class, inside a
designated method referred to as a factory method. Thus, a factory method can
be defined as a method in a class that:

B Sclects an appropriate class from a class hierarchy based on the application
context and other influencing factors

B [Instantiates the selected class and returns it as an instance of the parent
class type

Factory Method

|Factory Method

Vi

<<interfaces>
Creator

factoryMethod () : ParentClass

T
|
|
|

ConcreteCreator

factoryMethod () : ParentClass 7

| Implementation

]

|
|
|
|
|
|
i/

— — — — — — — — — — — —

| |
| |
| ParentClass |
=
| |
| |
: SubClass 2 SubClass 1 :
| == A7 |
o ——— T —— — — — —
/ g
-~
~
//
e
-~
-~

Factory Method (Example)

Implementer I Functionality

FileLogger ISHNESinconﬂngrne&mgeshjalogfﬂe

ConsoleLogger I[msphysHmnnﬂngrne&mgesonthescmfn

<<interfaces>
Logger

——— -
log (meg:String)

-
|
I
I
I
|
I

FileLogger ConsoleLogger

log(msg:String) log(msg:String)

Factory Method (Example)

public class FileLogger implements Logger {
public wvoid log(String msg) {
FileUtil futil = new FileUtil();

futil.writeToFile("log.txt”, msg, true, true);

}

public class ConsoleLogger implements Logger {
public wvoid log(String msg) ({
System.out.println(msg) ;

} Sample logger.properties file contents
FileLogging=0FF

Factory Method (Example)

<<lnterface>>
ConsolelLogger Logger
_______ _D
log (msg:String) log (msg:String)

4 o

I
|
=< Creategs=> |
I
1

LoggerTest FileLogger

< CYeates==

log (msg:String)

Factory Method (Example)

public class LoggerFactory ({
public boolean isFileLoggingEnabled() {
Properties p = new Properties();
try |
p.-load(ClassLoader.getSystemResourceAsStream
"Logger .properties")) ;
String fileLoggingValue =
p.getProperty ("FileLogging") ;
if (fileLoggingValue.equalsIgnoreCase ("ON") == true)
return true;

//Factory Method
else

public Logger getLogger() ({
return false;

if (isFilelLoggingEnabled()) {
} catch (IOException e) { ggtng

return new FileLogger () ;
} else {

return false;

return new ConsoleLogger() ;

Factory Method (Example)

<<interfacess
ConsoleLogger
Logger
——————— >
log (msg:String) log (msg:String)
| b
LoggerTest
::ccreates;: :
| I
LoggerFactory FileLogger
z<Createss>

<<USes>>
getLogger () :Logger log (msg:String)

Factory Method (Example)

:LoggerTest : LoggerFactory
| getLogger () i :FileLogger : ConsoleLogger
l ~
I 1 T T
1 | FileLogger() | |
f |
The getLogger factory method #+#,#f” 1 :
creates an instance of . |
either the FileLogger or the : ConscleLogger () |
ConsolelLogger | i ﬁ

| | invoke the log method

[

| 1og(msg:8tring}.’#'#H#,#,#4f’#H## on the Logger instance
| | N created

|

|

| log (msg:String) | T
|

|
A

public class LoggerTest {
public static woid main(String[] args) {
LoggerFactory factory = new LoggerFactory() ;
Logger logger = factory.getLogger() ;
logger.log("A Message to Log");

Singleton Pattern

4

Having an instance of the class in a global variable seems like
an easy way to maintain the single instance.All client objects
can access this instance in a consistent manner through this
global variable. But this does not prevent clients from creating
other instances of the class. For this approach to be successful,
all of the client objects have to be responsible for controlling
the number of instances of the class.

This widely distributed responsibility is not desirable because a
client should be free from any class creation process details.

The responsibility for making sure that there is only
one instance of the class should belong to the class
itself.

Singleton (Example)

-Ssinglelnstance

FileLogger

logger:FileLogger

synchronized log(msg:String)
getLogger() :FileLogger

FileLogger Class as a Singleton

Singleton (Example)

public class FileLogger implements Logger {
private static FileLogger logger;
//Prevent clients from using the constructor
private FileLogger() {

}
public static FileLogger getFileLogger() {

if (logger == null) {
logger = new FilelLogger();

}

return logger;

}
public synchronized void log(String msg) {

FileUtil futil = new FileUtil();

futil.writeToFile("log.txt”,msg, true, true);

Singleton (Example)

» Make the Constructor Private

» Static Public Interface to Access an Instance

//client code
public class LoggerTest{
public static void main(String[] args)/{
LoggerFactory factory=new LoggerFactory();
//factory method call
Logger logger=factory.getLogger();
logger.log("A Message to Log");

Singleton (Example)

public class LoggerFactory {
public boolean isFileLoggingEnabled() {
Properties p = new Properties();
try {
p.load(ClassLoader .getSystemResourceAsStream/(
"Logger .properties")) ;
String filelL.oggingValue =
p-getProperty("FileLogging") ;

if (fileLoggingValue.equalsIgnoreCase("ON") == true)
return true; public Logger getLogger() {
else if (isFileLoggingEnabled()) {

t fal ; : :
return atseq return FilleLogger.getFileLogger();

} catch (IOException e)
} else |

return false;
return new ConsoleLogger();

Builder Pattern

» This design may not be effective when the object being created
is complex and the series of steps constituting the object
creation process can be implemented in different ways
producing different representations of the object.

» Using the Builder pattern, the process of constructing such an
object can be designed more effectively. The Builder pattern
suggests moving the construction logic out of the object class to
a separate class referred to as a builder class.

Builder

» The design turns out to be more modular with each
implementation contained in a different builder object.

» Adding a new implementation (i.e.,adding a new builder)
becomes easier.

» The object construction process becomes independent
of the components that make up the object. This provides
more control over the object construction process.

Builder

<<interfaces=
Builder

createComponent A()
createComponent B ()
getObject ()

Client ConcreteBuilder 1

creats()

N

createComponent_A()

"

createComponent_B()

—_—— N N

ConcreteBuilder 1

ConcreteBuilder 2

createComponent A()
createComponent B()
getObject ()

createComponent A()
createComponent B ()
getObject ()

Director Object

<cinterface>> Director
Bullder ,
czContainss=
= <>

createComponent A() - 7 puild O
createComponent B()
getObject ()

| Client ConcreteBullder Director

|

| create () [

| 5

l

I

I
\ create{builderqCGncreteEuilder}
ConcreteBulilder :

v NS

buildf()

N

createComponent A(

Y

createComponent A()
createComponent B()
getObject ()

createComponent B ()

A

getObiject () I

]
-
|

Builder (Example)

UIBuilder

— [searchUI:JPanel

addUIControls ()
initialize()
getSQL () : String
getSearchUI () :JPanel

EmpSrchBuilder CandSrchBuilder
addUIControls () addUIControls ()
initialize() initialize ()

getSQL () :String
getSearchUI () :JPanel

getSQL() :String
getSearchUI () :JPanel

Abstract UlBuilder Class

public abstract class UIBuilder ({
protected JPanel searchUI;
//add necessary UI controls and initialize them
public abstract woid addUIControls();
public abstract woid initialize();
//return the SELECT sgl command for the specified criteria
public abstract String getSQL() ;
//common to all concrete builders.
//returns the fully constructed search UI
public JPanel getSearchUI () {

return searchUIl;

Concrete Builder

class EmpSrchBuilder extends UIBuilder {

public wvoid addUIControls() {

searchUl new JPanel() :

JLabel lblUserName
JLabel 1blCity

new JLabel ("Name

new JLabel ("City:");

JLabel lblRenewal = new JLabel ("Membership Renewal

GridBagLayout gridbag

new GridBagLayout () ;

:")

A -

searchUTI.setLayout (gridbag) ;

GridBagConstraints gbc new GridBag(
searchUI.add (lblUserName) ;

searchUI.add (txtUserlName) ;

class CandSrchBuilder extends UIBuilder |

public woid addUIControls () ({

searchUI new JPanel () ;

JLabel lblUserName new JLabel ("Name :");

JLabel lblExperienceRange =
new JLabel ("Experience (min Yrs.) :");
JLabel 1b1Skill new JLabel ("Skill :");

cmbExperience.addItem("<5") ;

cmbExperience.addItem(">5") ;

GridBagLayout gridbag = new GridBagLayout () ;

searchUI. setLayout (gridbag) ;

Concrete Builder

Builder Responsibility

EmpSrchBuilder * Builds a Jpanel object with the necessary Ul controls for
the employer search

* [nitializes Ul controls

* Returns the fully constructed JpPanel object as part of the
getSearchUI method

* Builds the required SQL select command and returns it as
part of the getSQL. method

CandSrchBuilder | e Builds a JPanel object with the necessary Ul controls for
the candidate search

* Initializes Ul controls

* Returns the fully constructed Jranel object as part of the
getSearchUI method

* Builds the required SQL select command and returns it as
part of the getSQL method

Director Class

public class UIDirector {
private UIBuilder builder;
public UIDirector (UIBuilder bldr) {
builder = bldr;
}
public woid build() {
builder.addUIControls () ;

builder.initialize();

class BuilderFactory {

UIBuilder builder = null;

builder = new CandSrchBuilder();

builder = new EmpSrchBuilder();
}

return builder;

public UIBuilder getUIBuilder(String str)

{

if (str.equals(SearchManager.CANDIDATE SRCH))

{

} else if (str.equals(SearchManager.EMPLOYER SRCH)) {

Finally

UTBuilder

searchuI:JPanel

cwCcontainsss

<

EmpSrchBuilder

addvuIControls()
initializel()
getSQL () : 5tring

getSearchuI () :JPansl

<< Createsss

{ ________

[

*

UIDirector

bullder:UIBuilder

I
zzCreatesss|

i

CandSrchBuilder

JPanel

«<Creatasss

{ _________

addUuIControls ()
initialize ()
getSQL () : 5String
getSearchUI () : JPanel

build(})

<<CIredaless>>

- — SearchManager

caCreatess=

Final Cut

UIDirector director = new UIDirector (builder);

SearchManager UlDirector EmpSrchBuilder BuilderFactory
T | T 1
| | creat) |
. . ™
: getUIBuilder(type:String) f:
| | N
| | | |
| | L create() I
create(builder:UIBuilder) I |
| b I I
| build() | | I
! > | |
| | addUIControls() | |
| Sy
: I initialize() 1 BuilderFactory factory = new BuilderFactoryi();
: getSearchUl() ﬁ //create an appropriate builder instance
: > builder = factory.getUIBuilder (selection);
! getSaL() |
: ﬂ //configure the director with the builder
I
I I
I I

//director invokes different builder
/ /methods

director.build/() ;

//get the final build object

JPanel UICb]j = builder.getSearchUI();

Builder (Example 2)

5. No

Order Type

Details

Overseas orders

Orders from countries other than the United States.
Additional shipping and handling is charged for these
orders.

Overseas orders are accepted only if the order amount
is greater than $100.

California orders

U.S. orders with shipping address in California and are
charged additional sales tax.
Orders with $100 or more order amount receive free

regular shipping.

Non-California
orders

U.S. orders with shipping address not in California.
Additional sales tax is not applicable.

Orders with $100 or more order amount receive free
regular shipping.

Director

CACrdBuilder

items:vector
Cax:double
shipping:double

save ()

OrderDirector

< Abuilder:0rderBuilder

parse (XMLData:String)
build (XMLData:String)

order :Order
ccinterfacess <=containsss
isvalidOrder () OrderBuilder N .
addItems () T
calcShipping() F———— {Horder:order
calcTax ()
getoOrder () isvalidOrderi)
addItems ()
I calcShipping () <} ————
: calcTax()
| getOrder ()
| MonCAOrdBuilder ‘ﬂ
|
|
E: order:0Order I
o |
fl
§ I isvalidorder () : 0S0rdBuilder
vl |addItems () |
L L R O
| |caleshipping () order:Order
| calcTax ()
[getOrder () isvalidOrder ()
' r _ . addItems ()
| | ==Createsss -
Wy calcShipping()
L a ===}
order |- _==createsss calcTax ()
getOrder ()

Parse the input XML string
Validate the data

Calculate the tax

Calculate the shipping
Create the actual object with:

