" A
Objects and Classes

The objectives of this chapter are:

=To discuss important aspects of the software
development process

= To define objects and classes

® To understand object models and class models
* To explain instance variables and instance methods
* To explain constructors



" A
The Software Crisis

= We've all seen the statistics on software projects:
® For every 6 new large scale systems put into production, 2 are cancelled.
® The average software project overshoots its schedule by 50%
® Large projects generally do worse

® 75% of all systems are "operating failures" which either do not function
as intended or are not used at all.

= One of the primary reasons for the software crisis is that the
complexity of the required systems has outstripped the
complexity management capabilities of structured
(procedurally based) software paradigms.



" A
The Object Oriented Paradigm

= One of the primary features of the O-O paradigm is its ability to
manage complexity.
@ Clear identification of system entities (objects)
® Abstract classification of system entities (classes)

@ Clear delineation of entity boundaries (roles, responsibilities,
encapsulation, cohesion, coupling)

s Clear separation of Abstraction boundaries (realistic class hierarchies)

® | ess ambiguous mapping between the real world and the software
components modelling the real world. (objects)

= Unfortunately, the O-O paradigm is not clearly understood
s Many programmers simply think that creating classes is OO programming

s Many programmers erroneously think that because they use a language
which supports OO concepts they are implementing OO designs

s Many programmers, when confronted with code, cannot identify whether it
IS object-oriented and, if so, what elements make it OO.



" A
The Object Oriented Paradigm

» Because the O-O paradigm is very much about complexity, it
has shown to be difficult to teach and learn
® Almost all examples are too simple or contrived
® They illustrate a point, but have no real meaning

® Real examples are expensive to create and require a large time
commitment to learn (due to complexity)

@ Students are often left with the feeling, "why would | do this?"

® \When confronted with time pressures, programmers will often fall back to
what they know best (usually, procedural programming techniques)

* The average programmer takes 6 months to 2 years to learn
the O-O paradigm.

® There are, generally speaking, no short-cuts

® Review your progress! Keep all the code you've written and review
® Requires abstract thinking

@ Most students report a time when, "the light goes on"
® The "a-ha" experience



" A
Where it all starts...

= The focus of the Object-Oriented paradigm is the Object
® NOT classes. Classes are an abstraction of objects.

= Objects are identified from the real world

= An object model is created to represent the real world
® The data associated with each object are identified and modelled.
® The various behaviours of each object are identified and modelled.
® |nteractions between objects are modelled.

= The Obijects in the object model are classified
® Designers create classes
® Programmers implement classes
@ Classes are logically grouped into a hierarchical classification structure
@ Because Java only allows single inheritance, that structure is a tree.
® C++ allows multiple inheritance; the classification structure is a lattice.



Creating Classes

= Objects in the object model are formalized
® Objects are abstracted into classes
® Only attributes and methods relevant to our domain are classified.
® Attributes are formalized into instance variables
® Behaviour is formalized into methods
® Classes are represented on a class diagram

= Object interaction is also abstracted
® Associations are identified
@ Added to class diagram

= Classes and the class diagram represent the static structure of
the system
® How the system behaves is not represented by this model.



" J
Example Object Model

Debit

Account Transaction
Credit
Credit w
@ Account
‘

Credit w

Debit

Credit




Example Class Model

Ledger

-name:String

+newAccount():boolean
+closeAccount(): void
+newTransaction(): void

*

Account

-number:int
-owner:String
-overdraftLimit:int
-startDate:Date

+findTransaction(): Transaction

+close(): boolean

1

Debit

1.*

*

Credit

Transaction

-date: Date
-amount: int

+getDebitAccount(): Account
+getCreditAccount(): Account




Objects and Classes

= Programmers implement classes
® Classes are templates or blueprints for Objects
® Data and methods are defined within Classes

® Classes must provide an implementation such that objects created from
those classes behave as those defined in the Object model.

= An Object is the manifestation of a class
® An object is an Instance of a class
® The process of creating an object is called instantiation
® The attributes of an object are called instance variables
® The methods of an object are called instance methods

= [n Java, Objects are created using the new keyword:

Employee anEmployee = new Employee();




" A
Defining Classes

= A class definition must have the following:

® The keyword "class" followed by the name of the class
® The class body

» Before the keyword "class" is the optional modifier "public”

® |f a class is public, it must be defined within a file which is the same
name as the class with a ".java" extension.

® i.e. Classname.java

® eg. HelloWorld.java, Account.java, Ledger.java, Transaction.java
® most classes are declared public

= The class body contains:

® Zero or more instance variables
® Zero or more methods



Example Class Definition

in Employee.java:

public class Employee
{
String name;
int salary;
Date startingDate;
[... more variable definitions ...]

Instance
Variables:

public int getSalary()
{

Methods:

return salary;

}

public int computeHourlyRate()

{

/l calculate hourly rate from salary

}

[... more method definitions ...]

}




Defining Instance Variables

= [nstance variables are declared using the same syntax as
ordinary variables.
@ Variables can be prefixed with a visibility modifier

modifier type variable_name;

= Variables can have one of 4 different visibilities:
® public - the variable can be directly accessed from anywhere
® private - the variable can only be directly accessed from within the class

® protected - the variable can be access directly from within the class,
within the package, or from within any subclass.

® default (no modifier specified) - the variable can be accessed directly
from within the package

= To preserve encapsulation, instance variables should be
declared private.



Encapsulation

= Encapsulation is a very important O-O concept
@ Each object has 2 views. An internal view and an external view

= Encapsulation is a form of protection
= Also called Information Hiding

® The outside world does not have direct access to the internal
implementation or representation of an object

® As long as the external view does not change, the internal view can take
on any form without affecting the outside world

® By hiding data and providing methods to gain access to it, an object can
maintain high data integrity

® Methods have the responsibility of maintaining data integrity

= private visibility offers full encapsulation
@ protected and default offer limited encapsulation
@ public offers no encapsulation



Encapsulation Example

Class Definition: Instances:
public class Account

{

private int number;

private int
overdraftLimit;

private Date startDate;

private String owner;

number = 11346
overdraftLimit = 1000
startDate

[... methods ...] Fred

Jones

}

Instance variables are encapsulated.
- no direct access from outside
the object

number = 12364
overdraftLimit = 300
startDate
owner

June 15,
1994

Each object has its own variables.
These variables are declared

within the class. Billy

Wiggs



Defining Instance Methods

* Method definitions include a method signature and a method
body.

. thade o | afinad with the fallawi tay-
modifier return_type method name(type name, ...)

= The return type can be:
@ 3 fundamental data type
® an object reference
® void (no return)

= Parameters are optional
® [f the method takes no parameters, empty brackets are required ()
® Multiple parameters are separated by commas
® Parameters are defined by type and name
® A parameter is a local variable whose scope is the method.



" A
Defining Instance Methods - Visibility

* Methods have the same visibility modifiers as variables
@ public - the method can be invoked from anywhere
@ private - the method can only be invoked from within the class

® protected - the method can be invoked directly from within the class,
within the package, or from within any subclass.

@ default (no modifier specified) - the method can be invoked directly from
within the package

= [f a method is part of the class's public interface (external
view), the method should be public

= [f a method is part of the class's internal implementation (ie,
support method, etc), it should be private.

= Be careful using default or protected. Use only when justified.



"
Defining Instance Methods - Body

= A method's body contains all the statements to be executed
as part of the method

= The method body is contained within curly braces after the

method definition:
® Use {} placement and indentation to clearly show code structure

public class CalculationSheet

{

public void performCalculations()

{
[... method body ...]

}

public void clearSheet()

{
}
]

N~




Returning values from methods

= A method which has a non-void return type MUST return a
value

® The return value's type must match the type defined in the method's
signature.

® A void method can use a return statement (with no return value) to exit
the method.

® The return value can be used the same as any other expression.

public class Car

{

private int currentGeatr,
private int currentRpms;

public int calculateSpeed()

{

return currentRpms * currentGear;

}
}




Classes as types

*= When a class is defined, the compiler regards the class as a
new type.

= When a variable is declared, its type can be a primitive type or
"Class" type.
® Any variable whose type is a class is an object reference.
® The variable is a reference to an instance of the specified class.
® The variables holds the address (in memory) of the object.

int x; Employee anEmployee;

0 null .

Note: null means
“refers to no object”




null References

* null means “refers to no object”
= Object references can be compared to null to see if an object
IS present or not.

= null is the default value of an object reference before it is
initialized

Employee anEmployee,;

[...]

if (anEmployee == null)
{
}




"
Initializing Object References - new

= To initialize an object reference, you must assign it the
address of an object

= The new operator creates a new instance and returns the
address of the newly created object

* new allocates memory for the object

® new also invokes a method on the object called a constructor
® new returns the address of the memory allocated for the object.

Employee anEmployee;
[...]

anEmployee = new Employee();




" A
Assigning Object References

= Assigning one reference to another results in two references
to the same object

® |[f two references contain the same memory address, they are referring to
the same object.

= Remember testing for equality of Strings using ==

= Each object has a reference count

® \When an object's reference count becomes zero, it will be collected by
the garbage collector

Employee anEmployee = new Employee();
Employee anotherEmployee = anEmployee;

anEmponee\
anotherEmployee > Employee




Invoking Instance Methods

= To invoke a method on an object, use the . (dot) operator

objectReference.methodName(parameters);

. If there is a return value, it can be used as an expression

Car aCar = new Car();

[..]

if (aCar.calculateSpeed()>110)
{

System.out.printin("You're Speeding!");

}
[...]




Passing Parameters to Methods

* Method parameters are declared in the method's signature.

= When a method invocation is made, any parameters included
In the invocation are passed to the method
® All parameters are passed by value. le, a copy is made
® The value of fundamental data types are copied
® The value of object references (ie memory addresses) are copied

. Parameters become variables within the method. They are
not known outside the method.

public float calculatelnterestForMonth(float rate)

{

return lowBalanceForMonth * (rate/12.0);

}




"
Overloading Methods

* Java allows for method overloading.

= A Method is overloaded when the class provides several
iImplementations of the same method, but with different
parameters
® The methods have the same name

® The methods have differing numbers of parameters or different types of
parameters

® The return type MUST be the same

public float calculatelnterestForMonth()

{

return lowBalanceForMonth * (defaultRate/12.0);

}

public float calculatelnterestForMonth(float rate)

{

return lowBalanceForMonth * (rate/12.0);

}




Accessor Methods - gets

= Objects have variables.
@ Because of encapsulation, those variables are generally private
@ However, the outside world may need to use those variables

@ The class implementor may choose to add a "get" method to return the
value

* The usual name of the get method is the name of the variable
prefixed with the word "get"
@ getName(), getAddress(), getPhone(), getBalance()

public class BankAccount

{

private float balance,;

public float getBalance()

{

return balance;

}




Accessor Methods - sets

= Similarly, the outside world may need to set the value of an
Instance variable

® The class implementor may choose to implement a set method.

® The responsibility of the set method is to set the appropriate variable
WHILST MAINTAINING data integrity of the object.

* The usual name of the set method is the name of the variable
prefixed with the word "set"
® setName(), setAddress(), setPhone(), setBalance()

public class BankAccount

{

private String ownerName;

public void setOwnerName(String aName)

{

ownerName = aName;

}




Design Issues - When to provide gets and sets

* Get and set often provide confusion for novice programmers

® Do all instance variables have them?

® |[f so, why don't we make the instance variables public and access them
directly?

® Don't gets and sets violate encapsulation?

* Whether a variable has an associated get and set method is a
design issue; it is not a coding issue.

= [magine a BankAccount Class
® All Bank Accounts have Account Numbers

= Once an Account's Account Number has been set, should it
be changeable?

. If we don't provide a set method, how do we initialize the
variable in the first place?



Initializing Objects - Constructors

* When an object is created, all instance variables are initialized
to the default value for their type

® Fundamentals are 0, 0.0, \OOQ' or false
® Object references are null

= [n order to put the object into a usable state, its instance
variables should be initialized to usable values

® This could be accomplished by calling the various set methods

® This is not always possible because it is not required that all instance
variables have set methods.

= Java provides for another method of initializing objects

= When an object is created, a constructor is invoked. The
responsibility of the constructor method is to initialize the
object into a usable state.



Constructors

= Constructors have the following characteristics
® There is NO return type. NOT even void
® The method name is the same name as the class
® Constructors can be overloaded

= In order to put the object into a usable state, its instance
variables should be initialized to usable values

® This could be accomplished by calling the various set methods

@ This is not always possible because it is not required that all instance
variables have set methods.

= Java provides for another method of initializing objects

= When an object is created (using new), a constructor is
invoked. The responsibility of the constructor method is to
initialize the object into a usable state.



Constructors - Example

public class BankAccount

{

String ownersName;
int accountNumber;
float balance;

public BankAccount()

{
}
public BankAccount(int anAccountNumber)
{
accountNumber = anAccountNumber;
}
public BankAccount(int anAccountNumber, String aName)
{
accountNumber = anAccountNumber;
ownersName = aName;
}




" J
Constructors - Example

= When an object is created (using new) the compiler
determines which constructor is to be invoked by the
parameters passed

® Multiple constructors allows the class programmer to define many
different ways of creating an object.

public static void main(String[] args)

{
BankAccount anAccount = new BankAccount();
BankAccount anotherAccount = new BankAccount(12345);
BankAccount myAccount = new BankAccount(33423, "Craig");




o
Constructors

* [f no constructors are defined for a class, the compiler

automatically generates a default, no argument constructor
@ All instance variables are initialized to default values.

= However, if any constructor is defined which takes
parameters, the compiler will NOT generate the default, no
argument constructor
® |f you still need one, you have to explicitly define one.



Review

* What is the difference between classes and objects?

» What are the modifiers for classes, instance variables and
methods? What do they mean?

= What is encapsulation? Why is it important?

= How are method parameters defined?

* How are method parameters passed?

= How do accessor methods support encapsulation?
= What are constructors?



