
Objects and Classes

The objectives of this chapter are:

To discuss important aspects of the software
development process

To define objects and classes
To understand object models and class models

To explain instance variables and instance methods
To explain constructors

We've all seen the statistics on software projects:
For every 6 new large scale systems put into production, 2 are cancelled.
The average software project overshoots its schedule by 50%

Large projects generally do worse
75% of all systems are "operating failures" which either do not function
as intended or are not used at all.

One of the primary reasons for the software crisis is that the
complexity of the required systems has outstripped the
complexity management capabilities of structured
(procedurally based) software paradigms.

The Software Crisis

One of the primary features of the O-O paradigm is its ability to
manage complexity.

Clear identification of system entities (objects)
Abstract classification of system entities (classes)
Clear delineation of entity boundaries (roles, responsibilities,
encapsulation, cohesion, coupling)
Clear separation of Abstraction boundaries (realistic class hierarchies)
Less ambiguous mapping between the real world and the software
components modelling the real world. (objects)

Unfortunately, the O-O paradigm is not clearly understood
Many programmers simply think that creating classes is OO programming
Many programmers erroneously think that because they use a language
which supports OO concepts they are implementing OO designs
Many programmers, when confronted with code, cannot identify whether it
is object-oriented and, if so, what elements make it OO.

The Object Oriented Paradigm

Because the O-O paradigm is very much about complexity, it
has shown to be difficult to teach and learn

Almost all examples are too simple or contrived
They illustrate a point, but have no real meaning
Real examples are expensive to create and require a large time
commitment to learn (due to complexity)

Students are often left with the feeling, "why would I do this?"
When confronted with time pressures, programmers will often fall back to
what they know best (usually, procedural programming techniques)

The average programmer takes 6 months to 2 years to learn
the O-O paradigm.

There are, generally speaking, no short-cuts
Review your progress! Keep all the code you've written and review

Requires abstract thinking
Most students report a time when, "the light goes on"

The "a-ha" experience

The Object Oriented Paradigm

Where it all starts...

The focus of the Object-Oriented paradigm is the Object
NOT classes. Classes are an abstraction of objects.

Objects are identified from the real world

An object model is created to represent the real world
The data associated with each object are identified and modelled.
The various behaviours of each object are identified and modelled.
Interactions between objects are modelled.

The Objects in the object model are classified
Designers create classes
Programmers implement classes
Classes are logically grouped into a hierarchical classification structure

Because Java only allows single inheritance, that structure is a tree.
C++ allows multiple inheritance; the classification structure is a lattice.

Creating Classes

Objects in the object model are formalized
Objects are abstracted into classes

Only attributes and methods relevant to our domain are classified.
Attributes are formalized into instance variables
Behaviour is formalized into methods
Classes are represented on a class diagram

Object interaction is also abstracted
Associations are identified

Added to class diagram

Classes and the class diagram represent the static structure of
the system

How the system behaves is not represented by this model.

Example Object Model

Credit

Debit

Debit

Debit

Debit

Credit

Credit

Credit

Ledger

Transaction

Transaction

Transaction

Transaction

Account

Account

Account

Example Class Model

Ledger

-name:String

+newAccount():boolean
+closeAccount(): void
+newTransaction(): void

Account

-number:int
-owner:String
-overdraftLimit:int
-startDate:Date

+findTransaction(): Transaction
+close(): boolean

Transaction

-date: Date
-amount: int

+getDebitAccount(): Account
+getCreditAccount(): Account

Debit Credit

1 1..*

1..*

1 1

1..*

Objects and Classes

Programmers implement classes
Classes are templates or blueprints for Objects
Data and methods are defined within Classes
Classes must provide an implementation such that objects created from
those classes behave as those defined in the Object model.

An Object is the manifestation of a class
An object is an Instance of a class
The process of creating an object is called instantiation
The attributes of an object are called instance variables
The methods of an object are called instance methods

In Java, Objects are created using the new keyword:

Employee anEmployee = new Employee();

Defining Classes

A class definition must have the following:
The keyword "class" followed by the name of the class
The class body

Before the keyword "class" is the optional modifier "public"
If a class is public, it must be defined within a file which is the same
name as the class with a ".java" extension.

i.e. Classname.java
eg. HelloWorld.java, Account.java, Ledger.java, Transaction.java
most classes are declared public

The class body contains:
Zero or more instance variables
Zero or more methods

Example Class Definition

public class Employee
{

String name;
int salary;
Date startingDate;
[... more variable definitions ...]

public int getSalary()
{

return salary;
}
public int computeHourlyRate()
{

// calculate hourly rate from salary
}
[... more method definitions ...]

}

in Employee.java:

Instance
Variables:

Methods:

Defining Instance Variables

Instance variables are declared using the same syntax as
ordinary variables.

Variables can be prefixed with a visibility modifier

Variables can have one of 4 different visibilities:
public - the variable can be directly accessed from anywhere
private - the variable can only be directly accessed from within the class
protected - the variable can be access directly from within the class,
within the package, or from within any subclass.
default (no modifier specified) - the variable can be accessed directly
from within the package

To preserve encapsulation, instance variables should be
declared private.

modifier type variable_name;

Encapsulation

Encapsulation is a very important O-O concept
Each object has 2 views. An internal view and an external view

Encapsulation is a form of protection
Also called Information Hiding
The outside world does not have direct access to the internal
implementation or representation of an object
As long as the external view does not change, the internal view can take
on any form without affecting the outside world
By hiding data and providing methods to gain access to it, an object can
maintain high data integrity
Methods have the responsibility of maintaining data integrity

private visibility offers full encapsulation
protected and default offer limited encapsulation
public offers no encapsulation

public class Account
{

private int number;
private int

overdraftLimit;
private Date startDate;
private String owner;

[... methods ...]

}

Encapsulation Example

Class Definition: Instances:

number = 11346
overdraftLimit = 1000
startDate
owner

Fred
Jones

number = 12364
overdraftLimit = 300
startDate
owner

Billy
Wiggs

Instance variables are encapsulated.
- no direct access from outside

the object

Each object has its own variables.
These variables are declared
within the class.

May 1,
2001

June 15,
1994

Defining Instance Methods

Method definitions include a method signature and a method
body.

Methods signatures are defined with the following syntax:

The return type can be:
a fundamental data type
an object reference
void (no return)

Parameters are optional
If the method takes no parameters, empty brackets are required ()
Multiple parameters are separated by commas
Parameters are defined by type and name

A parameter is a local variable whose scope is the method.

modifier return_type method_name(type name, ...)

Defining Instance Methods - Visibility

Methods have the same visibility modifiers as variables
public - the method can be invoked from anywhere
private - the method can only be invoked from within the class
protected - the method can be invoked directly from within the class,
within the package, or from within any subclass.
default (no modifier specified) - the method can be invoked directly from
within the package

If a method is part of the class's public interface (external
view), the method should be public

If a method is part of the class's internal implementation (ie,
support method, etc), it should be private.

Be careful using default or protected. Use only when justified.

Defining Instance Methods - Body

A method's body contains all the statements to be executed
as part of the method

The method body is contained within curly braces after the
method definition:

Use {} placement and indentation to clearly show code structure

public class CalculationSheet
{

public void performCalculations()
{

[... method body ...]
}

public void clearSheet()
{
}

[...]
}

Returning values from methods

A method which has a non-void return type MUST return a
value

The return value's type must match the type defined in the method's
signature.
A void method can use a return statement (with no return value) to exit
the method.
The return value can be used the same as any other expression.

public class Car
{

private int currentGear;
private int currentRpms;

public int calculateSpeed()
{

return currentRpms * currentGear;
}

}

Classes as types

When a class is defined, the compiler regards the class as a
new type.

When a variable is declared, its type can be a primitive type or
"Class" type.

Any variable whose type is a class is an object reference.
The variable is a reference to an instance of the specified class.
The variables holds the address (in memory) of the object.

int x;

0

Employee anEmployee;

null
Note: null means

“refers to no object”

null References

null means “refers to no object"

Object references can be compared to null to see if an object
is present or not.

null is the default value of an object reference before it is
initialized

Employee anEmployee;

[...]

if (anEmployee == null)
{
}

Initializing Object References - new

To initialize an object reference, you must assign it the
address of an object

The new operator creates a new instance and returns the
address of the newly created object

new allocates memory for the object
new also invokes a method on the object called a constructor
new returns the address of the memory allocated for the object.

Employee anEmployee;

[...]

anEmployee = new Employee();

Assigning Object References

Assigning one reference to another results in two references
to the same object

If two references contain the same memory address, they are referring to
the same object.
Remember testing for equality of Strings using ==

Each object has a reference count
When an object's reference count becomes zero, it will be collected by
the garbage collector

Employee anEmployee = new Employee();
Employee anotherEmployee = anEmployee;

Employee

anEmployee

anotherEmployee

Invoking Instance Methods

To invoke a method on an object, use the . (dot) operator

• If there is a return value, it can be used as an expression

objectReference.methodName(parameters);

Car aCar = new Car();

[...]

if (aCar.calculateSpeed()>110)
{

System.out.println("You're Speeding!");
}

[...]

Passing Parameters to Methods

Method parameters are declared in the method's signature.

When a method invocation is made, any parameters included
in the invocation are passed to the method

All parameters are passed by value. Ie, a copy is made
The value of fundamental data types are copied
The value of object references (ie memory addresses) are copied

• Parameters become variables within the method. They are
not known outside the method.

public float calculateInterestForMonth(float rate)
{

return lowBalanceForMonth * (rate/12.0);
}

Overloading Methods

Java allows for method overloading.

A Method is overloaded when the class provides several
implementations of the same method, but with different
parameters

The methods have the same name
The methods have differing numbers of parameters or different types of
parameters
The return type MUST be the same

public float calculateInterestForMonth()
{

return lowBalanceForMonth * (defaultRate/12.0);
}

public float calculateInterestForMonth(float rate)
{

return lowBalanceForMonth * (rate/12.0);
}

Accessor Methods - gets

Objects have variables.
Because of encapsulation, those variables are generally private
However, the outside world may need to use those variables
The class implementor may choose to add a "get" method to return the
value

The usual name of the get method is the name of the variable
prefixed with the word "get"

getName(), getAddress(), getPhone(), getBalance()

public class BankAccount
{

private float balance;

public float getBalance()
{

return balance;
}

Accessor Methods - sets

Similarly, the outside world may need to set the value of an
instance variable

The class implementor may choose to implement a set method.
The responsibility of the set method is to set the appropriate variable
WHILST MAINTAINING data integrity of the object.

The usual name of the set method is the name of the variable
prefixed with the word "set"

setName(), setAddress(), setPhone(), setBalance()

public class BankAccount
{

private String ownerName;

public void setOwnerName(String aName)
{

ownerName = aName;
}

Design Issues - When to provide gets and sets

Get and set often provide confusion for novice programmers
Do all instance variables have them?
If so, why don't we make the instance variables public and access them
directly?
Don't gets and sets violate encapsulation?

Whether a variable has an associated get and set method is a
design issue; it is not a coding issue.

Imagine a BankAccount Class
All Bank Accounts have Account Numbers

Once an Account's Account Number has been set, should it
be changeable?

• If we don't provide a set method, how do we initialize the
variable in the first place?

Initializing Objects - Constructors

When an object is created, all instance variables are initialized
to the default value for their type

Fundamentals are 0, 0.0, '\000' or false
Object references are null

In order to put the object into a usable state, its instance
variables should be initialized to usable values

This could be accomplished by calling the various set methods
This is not always possible because it is not required that all instance
variables have set methods.

Java provides for another method of initializing objects

When an object is created, a constructor is invoked. The
responsibility of the constructor method is to initialize the
object into a usable state.

Constructors

Constructors have the following characteristics
There is NO return type. NOT even void
The method name is the same name as the class
Constructors can be overloaded

In order to put the object into a usable state, its instance
variables should be initialized to usable values

This could be accomplished by calling the various set methods
This is not always possible because it is not required that all instance
variables have set methods.

Java provides for another method of initializing objects

When an object is created (using new), a constructor is
invoked. The responsibility of the constructor method is to
initialize the object into a usable state.

Constructors - Example

public class BankAccount
{

String ownersName;
int accountNumber;
float balance;

public BankAccount()
{
}

public BankAccount(int anAccountNumber)
{

accountNumber = anAccountNumber;
}

public BankAccount(int anAccountNumber, String aName)
{

accountNumber = anAccountNumber;
ownersName = aName;

}

[...]
}

Constructors - Example

public static void main(String[] args)
{

BankAccount anAccount = new BankAccount();
BankAccount anotherAccount = new BankAccount(12345);
BankAccount myAccount = new BankAccount(33423, "Craig");

}

When an object is created (using new) the compiler
determines which constructor is to be invoked by the
parameters passed

Multiple constructors allows the class programmer to define many
different ways of creating an object.

Constructors

If no constructors are defined for a class, the compiler
automatically generates a default, no argument constructor

All instance variables are initialized to default values.

However, if any constructor is defined which takes
parameters, the compiler will NOT generate the default, no
argument constructor

If you still need one, you have to explicitly define one.

Review

What is the difference between classes and objects?

What are the modifiers for classes, instance variables and
methods? What do they mean?

What is encapsulation? Why is it important?

How are method parameters defined?

How are method parameters passed?

How do accessor methods support encapsulation?

What are constructors?

