

A Survey of Programming Techniques

This chapter is a short survey of programming techniques. We use a simple example
to illustrate the particular properties and to point out their main ideas and problems.

Roughly speaking, we can distinguish the following learning curve of someone who
learns to program:

• Unstructured programming,
• procedural programming,
• modular programming and
• object-oriented programming.

This chapter is organized as follows. Sections 2.1 to 2.3 briefly describe the first three
programming techniques. Subsequently, we present a simple example of how modular
programming can be used to implement a singly linked list module (section 2.4).
Using this we state a few problems with this kind of technique in section 2.5. Finally,
section 2.6 describes the fourth programming technique.

2.1 Unstructured Programming
 Usually, people start learning programming by writing small and simple programs
consisting only of one main program. Here ``main program'' stands for a sequence of
commands or statements which modify data which is global throughout the whole
program. We can illustrate this as shown in Fig. 2.1.

Figure 2.1: Unstructured programming. The main program directly operates on

global data.

As you should all know, this programming techniques provide tremendous
disadvantages once the program gets sufficiently large. For example, if the same
statement sequence is needed at different locations within the program, the sequence
must be copied. This has lead to the idea to extract these sequences, name them and
offering a technique to call and return from these procedures.

2.2 Procedural Programming
 With procedural programming you are able to combine returning sequences of
statements into one single place. A procedure call is used to invoke the procedure.
After the sequence is processed, flow of control proceeds right after the position
where the call was made (Fig. 2.2).

Figure 2.2: Execution of procedures. After processing flow of controls proceed

where the call was made.

With introducing parameters as well as procedures of procedures (subprocedures)
programs can now be written more structured and error free. For example, if a
procedure is correct, every time it is used it produces correct results. Consequently, in
cases of errors you can narrow your search to those places which are not proven to be
correct.

Now a program can be viewed as a sequence of procedure calls . The main program
is responsible to pass data to the individual calls, the data is processed by the
procedures and, once the program has finished, the resulting data is presented. Thus,
the flow of data can be illustrated as a hierarchical graph, a tree, as shown in Fig. 2.3
for a program with no subprocedures.

Figure 2.3: Procedural programming. The main program coordinates calls to

procedures and hands over appropriate data as parameters.

To sum up: Now we have a single program which is devided into small pieces called
procedures. To enable usage of general procedures or groups of procedures also in
other programs, they must be separately available. For that reason, modular
programming allows grouping of procedures into modules.

2.3 Modular Programming
 With modular programming procedures of a common functionality are grouped
together into separate modules. A program therefore no longer consists of only one
single part. It is now divided into several smaller parts which interact through
procedure calls and which form the whole program (Fig. 2.4).

Figure 2.4: Modular programming. The main program coordinates calls to

procedures in separate modules and hands over appropriate data as parameters.

Each module can have its own data. This allows each module to manage an internal
state which is modified by calls to procedures of this module. However, there is only
one state per module and each module exists at most once in the whole program.

2.4 An Example with Data Structures
 Programs use data structures to store data. Several data structures exist, for example
lists, trees, arrays, sets, bags or queues to name a few. Each of these data structures
can be characterized by their structure and their access methods.

2.4.1 Handling Single Lists

 You all know singly linked lists which use a very simple structure, consisting of
elements which are strung together, as shown in Fig. 2.5).

Figure 2.5: Structure of a singly linked list.

Singly linked lists just provides access methods to append a new element to their end
and to delete the element at the front. Complex data structures might use already
existing ones. For example a queue can be structured like a singly linked list.
However, queues provide access methods to put a data element at the end and to get
the first data element (first-in first-out (FIFO) behaviour).

We will now present an example which we use to present some design concepts.
Since this example is just used to illustrate these concepts and problems it is neither
complete nor optimal

Suppose you want to program a list in a modular programming language such as C or
Modula-2. As you believe that lists are a common data structure, you decide to
implement it in a separate module. Typically, this requires you to write two files: the
interface definition and the implementation file. Within this chapter we will use a very
simple pseudo code which you should understand immediately. Let's assume, that
comments are enclosed in ``/* ... */''. Our interface definition might then look similar
to that below:

 /*
 * Interface definition for a module which implements
 * a singly linked list for storing data of any type.
 */

 MODULE Singly-Linked-List-1

 BOOL list_initialize();
 BOOL list_append(ANY data);
 BOOL list_delete();
 list_end();

 ANY list_getFirst();
 ANY list_getNext();
 BOOL list_isEmpty();

 END Singly-Linked-List-1

Interface definitions just describe what is available and not how it is made available.
You hide the information of the implementation in the implementation file. This is a
fundamental principle in software engineering, so let's repeat it: You hide information
of the actual implementation (information hiding). This enables you to change the
implementation, for example to use a faster but more memory consuming algorithm

for storing elements without the need to change other modules of your program: The
calls to provided procedures remain the same.

The idea of this interface is as follows: Before using the list one has to call
list_initialize() to initialize variables local to the module. The following two
procedures implement the mentioned access methods append and delete. The append
procedure needs a more detailed discussion. Function list_append() takes one
argument data of arbitrary type. This is necessary since you wish to use your list in
several different environments, hence, the type of the data elements to be stored in the
list is not known beforehand. Consequently, you have to use a special type ANY which
allows assigning data of any type to it . The third procedure list_end() needs to be
called when the program terminates to enable the module to clean up its internally
used variables. For example you might want to release allocated memory.

With the next two procedures list_getFirst() and list_getNext() a simple mechanism to
traverse through the list is offered. Traversing can be done using the following loop:

 ANY data;

 data <- list_getFirst();
 WHILE data IS VALID DO
 doSomething(data);
 data <- list_getNext();
 END

Now you have a list module which allows you to use a list with any type of data
elements. But what, if you need more than one list in one of your programs?

2.4.2 Handling Multiple Lists
 You decide to redesign your list module to be able to manage more than one list.
You therefore create a new interface description which now includes a definition for a
list handle. This handle is used in every provided procedure to uniquely identify the
list in question. Your interface definition file of your new list module looks like this:
 /*
 * A list module for more than one list.
 */

 MODULE Singly-Linked-List-2

 DECLARE TYPE list_handle_t;

 list_handle_t list_create();
 list_destroy(list_handle_t this);
 BOOL list_append(list_handle_t this, ANY data);
 ANY list_getFirst(list_handle_t this);
 ANY list_getNext(list_handle_t this);
 BOOL list_isEmpty(list_handle_t this);

 END Singly-Linked-List-2;

You use DECLARE TYPE to introduce a new type list_handle_t which represents
your list handle. We do not specify how this handle is actually represented or even
implemented. You also hide the implementation details of this type in your

implementation file. Note the difference to the previous version where you just hide
functions or procedures, respectively. Now you also hide information for an user
defined data type called list_handle_t.

You use list_create() to obtain a handle to a new thus empty list. Every other
procedure now contains the special parameter this which just identifies the list in
question. All procedures now operate on this handle rather than a module global list.

Now you might say, that you can create list objects. Each such object can be uniquely
identified by its handle and only those methods are applicable which are defined to
operate on this handle.

2.5 Modular Programming Problems
 The previous section shows, that you already program with some object-oriented
concepts in mind. However, the example implies some problems which we will
outline now.

2.5.1 Explicit Creation and Destruction
In the example every time you want to use a list, you explicitly have to declare a
handle and perform a call to list_create() to obtain a valid one. After the use of the list
you must explicitly call list_destroy() with the handle of the list you want to be
destroyed. If you want to use a list within a procedure, say, foo() you use the
following code frame:

 PROCEDURE foo() BEGIN
 list_handle_t myList;
 myList <- list_create();

 /* Do something with myList */
 ...

 list_destroy(myList);
 END

Let's compare the list with other data types, for example an integer. Integers are
declared within a particular scope (for example within a procedure). Once you've
defined them, you can use them. Once you leave the scope (for example the procedure
where the integer was defined) the integer is lost. It is automatically created and
destroyed. Some compilers even initialize newly created integers to a specific value,
typically 0 (zero).

Where is the difference to list ``objects''? The lifetime of a list is also defined by its
scope, hence, it must be created once the scope is entered and destroyed once it is left.
On creation time a list should be initialized to be empty. Therefore we would like to
be able to define a list similar to the definition of an integer. A code frame for this
would look like this:

 PROCEDURE foo() BEGIN

 list_handle_t myList; /* List is created and initialized */

 /* Do something with the myList */
 ...
 END /* myList is destroyed */

The advantage is, that now the compiler takes care of calling initialization and
termination procedures as appropriate. For example, this ensures that the list is
correctly deleted, returning resources to the program.

2.5.2 Decoupled Data and Operations
Decoupling of data and operations leads usually to a structure based on the operations
rather than the data: Modules group common operations (such as those list_...()
operations) together. You then use these operations by providing explicitly the data to
them on which they should operate. The resulting module structure is therefore
oriented on the operations rather than the actual data. One could say that the defined
operations specify the data to be used.

In object-orientation, structure is organized by the data. You choose the data
representations which best fit your requirements. Consequently, your programs get
structured by the data rather than operations. Thus, it is exactly the other way around:
Data specifies valid operations. Now modules group data representations together.

2.5.3 Missing Type Safety
 In our list example we have to use the special type ANY to allow the list to carry any
data we like. This implies, that the compiler cannot guarantee for type safety.
Consider the following example which the compiler cannot check for correctness:
 PROCEDURE foo() BEGIN
 SomeDataType data1;
 SomeOtherType data2;
 list_handle_t myList;

 myList <- list_create();
 list_append(myList, data1);
 list_append(myList, data2); /* Oops */

 ...

 list_destroy(myList);
 END

It is in your responsibility to ensure that your list is used consistently. A possible
solution is to additionally add information about the type to each list element.
However, this implies more overhead and does not prevent you from knowing what
you are doing.

What we would like to have is a mechanism which allows us to specify on which data
type the list should be defined. The overall function of the list is always the same,
whether we store apples, numbers, cars or even lists. Therefore it would be nice to
declare a new list with something like:

 list_handle_t<Apple> list1; /* a list of apples */
 list_handle_t<Car> list2; /* a list of cars */

The corresponding list routines should then automatically return the correct data
types. The compiler should be able to check for type consistency.

2.5.4 Strategies and Representation
The list example implies operations to traverse through the list. Typically a cursor is
used for that purpose which points to the current element. This implies a traversing
strategy which defines the order in which the elements of the data structure are to be
visited.

For a simple data structure like the singly linked list one can think of only one
traversing strategy. Starting with the leftmost element one successively visits the right
neighbours until one reaches the last element. However, more complex data structures
such as trees can be traversed using different strategies. Even worse, sometimes
traversing strategies depend on the particular context in which a data structure is used.
Consequently, it makes sense to separate the actual representation or shape of the data
structure from its traversing strategy.

What we have shown with the traversing strategy applies to other strategies as well.
For example insertion might be done such that an order over the elements is achieved
or not.

2.6 Object-Oriented Programming
 Object-oriented programming solves some of the problems just mentioned. In
contrast to the other techniques, we now have a web of interacting objects, each
house-keeping its own state (Fig. 2.6).

Figure 2.6: Object-oriented programming. Objects of the program interact by

sending messages to each other.

Consider the multiple lists example again. The problem here with modular
programming is, that you must explicitly create and destroy your list handles. Then
you use the procedures of the module to modify each of your handles.

In contrast to that, in object-oriented programming we would have as many list
objects as needed. Instead of calling a procedure which we must provide with the
correct list handle, we would directly send a message to the list object in question.
Roughly speaking, each object implements its own module allowing for example
many lists to coexist.

Each object is responsible to initialize and destroy itself correctly. Consequently,
there is no longer the need to explicitly call a creation or termination procedure.

You might ask: So what? Isn't this just a more fancier modular programming
technique? You were right, if this would be all about object-orientation. Fortunately,
it is not. Beginning with the next chapters additional features of object-orientation are
introduced which makes object-oriented programming to a new programming
technique.

