
Acceptance and Unit

Testing

(introduction)

2

Testing

• One of the practical methods commonly used to detect the

presence of errors (failures) in a computer program is to

test it for a set of inputs.

Our program

The output
is correct?

I1, I2, I3,
…, In, … Expected results

 = ?
Obtained results

“Inputs”
- No code inspection - No code analysis

- No model checking

3

Testing: four main questions

 At which level conducting the testing?
 Unit

 Integration

 System

 How to choose inputs?
 using the specifications/use cases/requirements

 using the code

 How to identify the expected output?
 Test oracles

 How good test cases are?
 When we can stop the testing activity

4

Test phases

 Acceptance Testing – this checks if the overall
system is functioning as required.

 Unit testing – this is basically testing of a single
function, procedure, class.

 Integration testing – this checks that units tested in
isolation work properly when put togheter.

 System testing – here the emphasis is to ensure that
the whole system can cope with real data, monitor
system performance, test the system’s error handling
and recovery routines.

 Regression Testing – this checks that the system
preserves its functionality after maintenance and/or
evolution tasks.

5

Business

Logic

GUI

Web UI

Persistence

Layer

Abbot/JFCUnit/Marathon…

HttpUnit/Canoo/Selenium

Junit/SQLUnit/XMLUnit

FIT/Fitnesse (High level)

Junit (Low level)

Cactus

Perfomance and

Load Testing

JMeter/JUnitPerf

Testing tools

6

 Unit Tests are tests written by the developers to test

functionality as they write it.

 Each unit test typically tests only a single class, or a

small cluster of classes.

 Unit tests are typically written using a unit testing
framework, such as JUnit (automatic unit tests).

 Target errors not found by Unit testing:

 - Requirements are mis-interpreted by developer.

 - Modules don’t integrate with each other

 Unit Testing

7

Testing based on the coverage of the executed program (source)

code.

Different coverage criteria:
• statement coverage

• path coverage

• condition coverage

• definition-use coverage

• …..

It is often the case that it is not possible to cover all code. For

instance:
 - for the presence of dead code (not executable code)

 - for the presence of not feasible path in the CFG

 - etc.

 Unit testing: a white-box approach

project

8

 Acceptance Tests are specified by the customer and
analyst to test that the overall system is functioning as
required (Do developers build the right system?).

 Acceptance tests typically test the entire system, or
some large chunk of it.

 When all the acceptance tests pass for a given user
story (or use case, or textual requirement), that story is
considered complete.

 At the very least, an acceptance test could consist of
a script of user interface actions and expected results
that a human can run.

 Ideally acceptance tests should be automated, either
using the unit testing framework (Junit), or a separate
acceptance testing framework (Fitnesse).

 Acceptance Testing

9

 Used to judge if the product is acceptable to the
customer

 Coarse grained tests of business operations

 Scenario/Story-based (contain expectations)

 Simple:

 Happy paths (confirmatory)

 Sad paths

 Alternative paths (deviance)

 Acceptance Testing

10

1.describe the system using a Use-Cases Diagram
* a use-case of that diagram represents a functionality implemented by

the system

2.detail each use-case with a textual description of, e.g., its
pre-post conditions and flow of events

* events are related to: (i) the interactions between system and user; and
(ii) the expected actions of the system

* a flow of events is composed of basic and alternate flows

3.define all instances of each use-case (scenarios) executing
the system for realizing the functionality

4.define, at least, one test case for each scenario

5.(opt) define additional test cases to test the interaction
between use-cases.

 Acceptance testing: a black-box approach

project

11

Different approaches can be used:

- Random values:
- for each input parameter we randomly select the values

- Tester Experience:
- for each input we use our experience to select relevant values to

test

- Domain knowledge:
- we use requirements information or domain knowledge information

to identify relevant values for inputs

 How to select input values? (1)

project

12

Different approaches can be used:

- Equivalence classes:
- we subdivide the input domain into a small number of sub-domains

- the equivalence classes are created assuming that the SUT exhibits
the same behavior on all elements

- few values for each classes can be used for our testing

- Boundary values:

– is a test selection technique that targets faults in applications at the

“boundaries” of equivalence classes

– experience indicates that programmers make mistakes in processing

values at and near the boundaries of equivalence classes

 How to select input values? (2)

project

13

- Combinatorial testing:

- test all possible combination of the inputs is often impossible

 e.g., method(a:int,b:int,c:int) .. how many combinations?

 with 10 values per input: 10
3

=1000

 with 100 values per input: 100
3

=1000000

- selection of relevant combinations is important

- Pairwise testing (aka 2-way): cover all combinations for each pair of
inputs

 <a,b> <a,c> <b,c> = 10
2

+ 10
2

+10
2
=300

 don’t care about the value of the third input

 How to select input values? (3)

project

14

+ system

increment

Prioritized

functionalities

Write

acceptance

tests

Execute

acceptance

tests

Write

and

execute

unit tests

“At different points in the process”

“Executed after the development” “Written before”

Iterative Software development

15

The motivation of unit testing is finding faults.

The motivation of acceptance testing is demonstrating

working functionalities.

Written and executed during the development. Written before the development and executed after.

Written using a unit testing framework. Written using an acceptance testing framework (also

unit testing framework).

Starting point: new capability (to add a new

module/function or class/method).

Starting point: User stories, User needs, Use Cases,

Textual Requirements, …

Used to find faults in individual modules or units
(individual programs, functions, procedures, web
pages, menus, classes, …) of source code. Used for
documentation (low level)

Used to verify that the implementation is complete and

correct. Used for Integration, System, and regression

testing. Used to indicate the progress in the

development phase. (Usually as %). Used as a

contract. Used for documentation (high level)

(extreme programming) When unit tests pass, write
another test that fails.

(extreme programming) When acceptance tests pass,

stop coding. The job is done.

Written by developers. Written by Customer and Analyst.

Unit Tests Acceptance Tests

In theory:

 Acceptance vs Unit Testing

16

In practice: The difference is not so clear-cut.

 We can often use the same tools for either or both kinds

of tests.

 Acceptance vs Unit Testing

17

 Manual Acceptance testing.
User exercises the system
manually using his creativity.

 Acceptance testing with “GUI
Test Drivers” (at the GUI level).
These tools help the developer
do functional/acceptance testing
through a user interface such as
a native GUI or web interface.
“Capture and Replay” Tools
capture events (e.g. mouse,
keyboard) in modifiable script.

Disadvantages:
expensive, error prone,

not repeatable, …

Disavantages:

Tests are brittle, i.e., have

to be re-captured if the

GUI changes.

“Avoid acceptance testing only in final stage: Too late to find bugs”

Traditional Approaches for acceptance
testing

18

 Starting from a user story
(or use case or textual
requirement), the customer
enters in a table
(spreadsheet application,
html, Word, …) the
expectations of the
program’s behavior.

 At this point tables can be
used as oracle. The
customer can manually
insert inputs in the System
and compare outputs with
expected results.

Pro: help to clarify requirements, used in System testing, …

Cons: expensive, error prone, …

inputs

output

Table-based Approach for acceptance
testing

19

 It is estimated that 85% of the defects
in developed software originate in the
requirements (communication between
customer and analyst, communication
between analyst and developer).

 There are several “sins” to avoid when
specifying requirements:

 noise

 silence

 ambiguity

 over-specification

 wishful thinking,

 … => ambiguous, inconsistent,
unusable requirements.

“order-processing system for a brewery”

 if a retail store buys 50 cases of a seasonal brew, no
discount is applied; but if the 50 cases are not
seasonal a 12% discount is applied. If a store buys
100 cases of a seasonal brew, a discount is applied,
but it's only 5%. A 100-case order of a non-seasonal
drink is discounted at 17%. There are similar rules
for buying in quantities of 200.

Table-based test cases can help in clarifying
requirements

20

Badly designed systems makes testing

difficult
 We have a thick GUI that

has program logic. The
interfaces between the
modules are not clearly
defined.

 Testing of specific
functions (Unit Testing)
cannot be isolated.

 Testing has to be done
through the GUI =>
Fit/Fitnesse is not
sufficient.

 Testing is difficult.

“Badly designed system”

GUI Test Drivers

21

Well architected applications makes testing
simple

 The GUI does not contain

any program logic other

than dealing with

presentation.

 The interfaces between the

modules are well defined.

 This give us testing

advantages. Unit and

System acceptance testing

are simpler.

“Well architected application”

22

 When an application has
modules with well defined
interfaces, each module can
be tested independently from
the other modules.

 Using this type of
environment the developer
can test the module to make
sure everything is working
before trying to integrate it
with other modules.

 This system does not require
Fit/ FitNesse. You could use
any automated test harness
that works for your application
(i.e., Junit).

Test Tool = Fit/Fitnesse or Junit

Well architected applications makes testing
simple: Testing a Module

23

Conclusions

 Badly designed systems makes testing difficult. Unit testing
is complex and all end-to-end tests are through the GUI.

 Well architected applications simplify testing. Unit testing is
simple and end-to-end tests are through interfaces of
modules.

 The motivation of Acceptance testing is demonstrating
working functionalities.

 The motivation of Junit is finding faults.

 Manual acceptance testing is expensive, error prone and not
repeatable.

 Table-based test cases help to clarify “textual requirements”.

 Table-based test cases can be “requirements verifiable and
executable”.

 Table-based test cases can be useful for Managers,
Customers, Analysts and Developers.

24

Additional references

-Jim Heumann. Generating Test Cases From Use Cases. Online IBM journal. 2001

http://ww.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/Gene

ratingTestCasesFromUseCasesJune01.pdf

- Peter Zielczynski. Traceability from Use Cases to Test Cases. online IBM journal

2006 http://www.ibm.com/developerworks/rational/library/04/r-3217/

- R.C.Martin and G.Melnik. Tests and Requirements, Requirements and Tests: A

Möbius Strip. IEEE Software 2008.

http://www.gmelnik.com/papers/IEEE_Software_Moebius_GMelnik_RMartin.pdf

-J. Aarniala, University of Helsinki. Acceptance Testing, Helsinki, October 30, 2006.

www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdf

http://ww.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://ww.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://ww.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://ww.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://ww.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://ww.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://www.gmelnik.com/papers/IEEE_Software_Moebius_GMelnik_RMartin.pdf
http://www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdf
http://www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdf
http://www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdf

