Wrappers;

Decorator and Adapter Patterns

Mohsen Afsharchi

Decorator

The Decorator object is designed to have the same interface as the
underlying object. This allows a client object to interact with the Deco-
rator object in exactly the same manner as it would with the underlying
actual object.

The Decorator object contains a reference to the actual object.

The Decorator object receives all requests (calls) from a client. It in
turn forwards these calls to the underlying object.

The Decorator object adds some additional functionality before or after
forwarding requests to the underlying object. This ensures that the addi-
tional functionality can be added to a given object externally at runtime
without modifying its structure.

Decorator vs Inheritance

Decorator Pattern

Inheritance

Used to extend the functionality of a
particular object.

Used to extend the functionality of a class
of objects.

Does not require subclassing.

Requires subclassing.

Dynamic.

Static.

Runtime assignment of responsibilities.

Compile time assignment of
responsibilities.

Prevents the proliferation of subclasses
leading to less complexity and
confusion.

Could lead to numerous subclasses,
exploding class hierarchy on specific
occasions.

More flexible.

Less flexible.

Possible to have different decorator
objects for a given object simultaneously.
A client can choose what capabilities it
wants by sending messages to an
appropriate decorator.

Having subclasses for all possible
combinations of additional capabilities,
which clients expect out of a given class,
could lead to a proliferation of
subclasses.

Easy to add any combination of
capabilities. The same capability can even
be added twice.

Difficult.

Example

<<cinterface=>
Logger

,::]__

log(msg:String)

Consclelogger

log(msg:String)

FileLogger

log(imsg:S5tring)

HTMLConsLogger

EncConsLogger

HTMLFileLogger

EncFileLogger

log(msg:String)

log(msg:String)

log(msg:S5tring)

log(msg:String)

Example

Subclass Parent Class Functionality

HTMLFileLogger |FileLogger Transform an incoming message to an
HTML document and store it in a log
file.

HTMLConsLogger |ConsoleLogger | [Iransform an incoming message to an
HTML document and display it on the
screen.

EncFileLogger FileLogger Apply encryption on an incoming
message and store it in a log file.

EncConsLogger ConsoleLogger Apply encryption on an incoming

message and display it on the screen.

LoggerDecorator Class

public class LoggerDecorator implements Logger {
Logger logger;
public LoggerDecorator (Logger 1inp logger) {
logger = 1inp_ logger;
}
public void log(String DataLine) {
/%
Default implementation
to be overriden by subclasses.
*/
logger.log(DataLine) ;

}
}//end of class

Class Structure

<<interface>>

Logger 1
A
log(msg:String) 9
-~
A
I 0
U
| v
l W
1
LoggerDecorator K>——
[>1ogger:Logger <—
log(msg:String)
HTMLLogger EncryptLogger

log(msg:String)

log(msg:String)
makeHTML (datalLine:String)

encrypt (datalLine:String)

Class Code

public class HTMLLogger extends LoggerDecorator ({
public HTMLLogger (Logger 1inp logger) {
super (inp_ logger) ;
}

public wvoid log(String DataLine) {
Datal.ine = makeHTML (DataLine) ;

logger.log(DataLine) ;

1
public String makeHTML (String DatalLine) {

DatalLline = "<HTML><BODY>" + "" + DatalLine +
"« /Db=" + "< /BODY></HTML=>";
return Dataline;

}
}//end of class

Class Hierarchy

<<lnterface=>>

| {) Logger <} 1
' |
I _ 1 |

| log(msg:String) Q
ConsolelLogger i% 'E '
o I
| o I
| v |
log (msg:String) 1 v |

LoggerDecorator >

FileLogger

— [1ogger:Logger <—

log(msg:String)

log(msg:String)

HTMLLogger EncryptLogger
log (msg:String) log(msg:String)
makeHTML (dataLine:String) encrypt (dataLine:String)

Client Class

class DecoratorClient {
public static wvoid main(Stringl] args) {

LoggerFactory factory = new LoggerFactorv();
Logger logger = factory.getLogger () ;
HTMLLogger hLogger = new HTMLLogger (logger) ;
//the decorator object provides the same interface.
hlL.ogger.log("A Message to Log");
EncryptLogger elogger = new EncryptLogger (logger) ;
eLogger.log("A Message to Log");

}
}//End of class

Message flow

:DecoratorClient :LoggerFactory :FileLogger : HTMLLogger

LoggerFactory ()

get access to the
singleton FileLogger

instance
getLogger () <

-

I
Logger (logger : Logger)
|
I
log (msg:String))

N

SR P I F 2

getLogger ()

H

makeHTML (msg: String)

X\j},lfki

|

|

| I

| [

blog(msg:S:ring]|

" |
|

"~ Adapter

Adapter

- Class Adapter

A class adapter is designed by subclassing the adaptee class. In addition, a class
adapter implements the interface expected by the client object. When a client
object invokes a class adapter method, the adapter internally calls an adaptee
method that it inherited.

Object Adapter

An object adapter contains a reference to an adaptee object. Similar to a class
adapter, an object adapter also implements the interface, which the client expects.
When a client object calls an object adapter method, the object adapter invokes
an appropriate method on the adaptee instance whose reference it contains.

Class vs Object Adapters

Class Adapters

Object Adapters

Based on the concept of inheritance.

Uses Dbject composition.

Can be used to adapt the interface of
the adaptee only. Cannot adapt the
interfaces of its subclasses, as the
adapter is statically linked with the
adaptee when it is created.

Can be used to adapt the interface of the
adaptee and all of its subclasses.

Because the adapter is designed as a
subclass of the adaptee, it is possible
to override some of the adaptee’s
behavior.

Note: In Java, a subclass cannot override a
method that is declared as final in its
parent class.

Cannot override adaptee methods.
Note: Literally, cannot “override” simply
because there is no inheritance. But
wrapper functions provided by the
adapter can change the behavior as

required.

The client will have some knowledge of
the adatee’s interface as the full public
interface of the adaptee is visible to the
client.

The client and the adaptee are completely
decoupled. Only the adapter is aware of
the adaptee’s interface.

Customer Class

class Customer {
public static final String UsS = "US";
public static final String CANADA = "Canada";
private String address;
private sString name;
private String zip, state, tvpe;

public boolean isvalidaddress() {

public Customer (String inp name, String inp address,
String inp zip, Sstring inp state,
string inp type) {

name = inp name;
address = 1inp address;
zip = inp zip;

state = 1np state;

type = 1inp_ tvpe;
}

}//end of class

AddressValidator Class

public 1nterface AddressValldator {
public boolean isValidAddress(String inp address,
String inp zip, String inp state);

}//end of class

class UsAddress implements AddressvValidator {
public boolean isValidAddress (String inp address,

String 1inp zip, String 1inp state) {

if (inp address.trim() .length() < 10)
return false;

if (inp zip.trim().length() < 5)
return false;

if (inp zip.trim().length() = 10)
return false;

if (inp state.trim() .length() != 2)
return false;

return true;

}
}//end of class

Customer

class Customer {

public boolean isvValidaddress() {
//get an appropriate address wvalidator
AddressValidator wvalidator = getValidator(type);
//Polymorphic call to validate the address
return wvalidator.isvValidaddress (address, zip, state);

}
private AddressvValidator getValidator (String custType) {

AddressValidator wvalidator = null;
i1f (custType.equals (Customer.uUs)) {
validator = new USAddress|();

¥
return validator;

}
}//end of class

Class Association

Customer

<<lnterface>>
AddressValidator

1sValidAddress (addr:String,
zlp:String, state:String)
:boolean

o
|
|
|
|
I

USAddress

1sValidAddress (addr:String,
zlp:String, state:String)
:boolean

Another Type of Address

class CAAddress {
public boolean isValidCanadianiddr (String inp address,

String inp pcode, String inp prvnc) {

if (inp address.trim() .length() < 15)
return false;

if (inp pcode.trim() .length() != 6)
return false;

if (inp prvnc.trim() .length() < &)
return false;

return true;

}
}//end of class

Class Association

<<lnterface>>
2ddressvValidator

CArddress

isValidAddress (addr:String,
zip:String, state:String)
:boolean

isvalidCanadia
pcode: St
:boolean

nAddr (addr:String,
ring, state:String)

/N

CARhddressAdapter

A
|
|
|
|
|
[

zip

isValidaddress (addr:String,
:5tring, state:String)
:boolean

Class Extension

public class CAAddressAdapter extends CAAddress
implements AddressvValidator {
public boolean isValidAddress(String inp address,
String inp zip, String inp state) ({
return 1isvValidCanadianaAddr (inp address, inp zip,
inp state);
}
}//end of class

Validator

public boolean isValidAddress() {
//get an appropriate address wvalidator
AddressValidator wvalidator = getValidator(type):;
//Polymorphic call to wvalldate the address
return validator.isValidaddress (address, zip, state);

}
private AddressValidator getValidator (String custType) {

AddressvValidator wvalidator = null;
1f (custType.equals(Customer.Us)) {

validator = new USAddress();

}
1f (type.equals (Customer.CANADA)) {
validator = new CAAddressAdapter();

)
return validator;

Class Association

Customer
I.-'\\
I3
| 3
| 5
WV
<<lnterface>>
AddressValidator CAAddress
isvalidAddress(addr:String, isValidCanadianAddr (addr:String,
zip:String, state:String) pcode:String, prvnc:String)
:boolean :boolean

I
I
I
|
| CAhddresshdapter

/_’F\ VA

isValidAddress (addr:String,
Zzip:String, state:String)
:boolean

UshAddress

lsValidaddress (addr:S5tring,
Zip:String, state:String)
:boolean

