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K-means clustering

In the clustering problem, we are given a training set {mm, e mf'm}}, and
want to group the data into a few cohesive “clusters.” Here, z(Y € R
as usual: but no labels y? are given. So, this is an unsupervised learning
problem.

The k-means clustering algorithm is as follows:

1. Initialize cluster centroids gy, o, ..., pup € R™ randomly.
2. Repeat until convergence: {

For every 1, set
) := argmin [ — ;|2
j

For each j, set I |
[y = iz 1{‘:(” = j}a:(%)
’ Z?ll 1{;:'[3} — j}




Example
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-
K-means convergence

Is the k-means algorithm guaranteed to converge? Yes it is, in a certain
sense. In particular, let us define the distortion function to be:

m

J(e,p) =) (|29 = poo |

i=1

The distortion function J is a non-convex function, and so coordinate
descent on J is not guaranteed to converge to the global minimum. In other
words, k-means can be susceptible to local optima. Very often A-means will
work fine and come up with very good clusterings despite this. But if you
are worried about getting stuck in bad local minima, one common thing to
do is run k-means many times (using different random initial values for the
cluster centroids p;). Then, out of all the different clusterings found, pick
the one that gives the lowest distortion J(c, ).



e
Mixture of Gaussians

We wish to model the data by specifying a joint distribution p(z®, z(0) =
p(z|20)p(z?). Here, 2(Y) ~ Multinomial(¢) (where ¢; > 0, Zj (b =1,
and the parameter ¢; gives p(z¥ = 5),), and zV|z) = j ~ N (p;j, 5;). We
let k denote the number of values that the z(!)’s can take on. Thus, our
model posits that each z(Y was generated by randomly choosing z(¥ from
{1,...,k}, and then z) was drawn from one of k Gaussians depending on
z(®) ThlS is called the mixture of Gaussians model. Also, note that the
PAC } s are latent random variables, meaning that they're hldden /unobserved.

The parameters of our model are thus ¢, ¢ and . To estimate them, we
can write down the likelihood of our data:

Up,p, ) = Zlngp AT

= Zlﬂg Z p(a® 2" 1, T)p(z1; ¢).

2(i)=1



Mixture of Gaussians
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e
Mixture of Gaussians

p(i,) = TTEfn(.L} + ﬂ_lfl (.T} + ?Tgfg (.T) -+ ...+ TT;ka(I}

where Zwi =1

1=

k
p(x) = Z?Tifz'(ﬂi’)

p(x) = moN (x|po, Xo) + T N(z|pr,21) + ..+ TN (2|, Xie)

k
p(z) = ZﬂiN(mlﬁk,Ek)




Mixture of Gaussians
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities +(z,,) associated with data point x,,, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by v(z,) for k = 1,2, 3, respectively



Latent Variable

Graphical representation of a Gaussian mixture model (Z,,
for a set of NV i.i.d. data points {x, }, with corresponding
latent points {z,.}, wheren =1,... N. T .
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The random variables z(V) indicate which of the k Gaussians each z(?
had come from. Note that if we knew what the 2(9’s were, the maximum

likelihood problem would have been easy. Specifically, we could then write
down the likelihood as

T

0y, B) =Y log p(x]27); 1, 5) +log p(217; 6).

i=1



e
Maximum Likelihood

Maximizing this with respect to ¢, p and X gives the parameters:

T

| 1 o
¢j = ;Zl{zmzj}a
i=1

T 0 = a0

. S {0 =5}

g _ 2 Y =} —p) @@ — )"
’ E:il 1{3('” = j}

Indeed, we see that if the 2(?’s were known, then maximum likelihood
estimation becomes nearly identical to what we had when estimating the
parameters of the Gaussian discriminant analysis model, except that here
the z(1)’s playing the role of the class labels.!

However, in our density estimation problem, the z9’s are not known.
What can we do?




