Unsupervised Learning

Mohsen Afsharchi

K-means clustering

In the clustering problem, we are given a training set $\{x^{(1)}, \ldots, x^{(m)}\}$, and want to group the data into a few cohesive "clusters." Here, $x^{(i)} \in \mathbb{R}^n$ as usual; but no labels $y^{(i)}$ are given. So, this is an unsupervised learning problem.

The k-means clustering algorithm is as follows:

- 1. Initialize cluster centroids $\mu_1, \mu_2, \ldots, \mu_k \in \mathbb{R}^n$ randomly.
- 2. Repeat until convergence: {

For every i, set

$$c^{(i)} := \arg\min_{j} ||x^{(i)} - \mu_j||^2.$$

For each j, set

$$\mu_j := \frac{\sum_{i=1}^m \mathbb{1}\{c^{(i)} = j\} x^{(i)}}{\sum_{i=1}^m \mathbb{1}\{c^{(i)} = j\}}.$$

Example

(d)

(e)

(f)

K-means convergence

Is the k-means algorithm guaranteed to converge? Yes it is, in a certain sense. In particular, let us define the **distortion function** to be:

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

The distortion function J is a non-convex function, and so coordinate descent on J is not guaranteed to converge to the global minimum. In other words, k-means can be susceptible to local optima. Very often k-means will work fine and come up with very good clusterings despite this. But if you are worried about getting stuck in bad local minima, one common thing to do is run k-means many times (using different random initial values for the cluster centroids μ_j). Then, out of all the different clusterings found, pick the one that gives the lowest distortion $J(c, \mu)$.

We wish to model the data by specifying a joint distribution $p(x^{(i)}, z^{(i)}) = p(x^{(i)}|z^{(i)})p(z^{(i)})$. Here, $z^{(i)} \sim \text{Multinomial}(\phi)$ (where $\phi_j \geq 0$, $\sum_{j=1}^k \phi_j = 1$, and the parameter ϕ_j gives $p(z^{(i)} = j)$,), and $x^{(i)}|z^{(i)} = j \sim \mathcal{N}(\mu_j, \Sigma_j)$. We let k denote the number of values that the $z^{(i)}$'s can take on. Thus, our model posits that each $x^{(i)}$ was generated by randomly choosing $z^{(i)}$ from $\{1, \ldots, k\}$, and then $x^{(i)}$ was drawn from one of k Gaussians depending on $z^{(i)}$. This is called the **mixture of Gaussians** model. Also, note that the $z^{(i)}$'s are **latent** random variables, meaning that they're hidden/unobserved.

The parameters of our model are thus ϕ , μ and Σ . To estimate them, we can write down the likelihood of our data:

$$\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{m} \log p(x^{(i)}; \phi, \mu, \Sigma)$$

=
$$\sum_{i=1}^{m} \log \sum_{z^{(i)}=1}^{k} p(x^{(i)}|z^{(i)}; \mu, \Sigma) p(z^{(i)}; \phi).$$

$$p(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x) + \ldots + \pi_k f_k(x)$$

where $\sum_{i=0}^k \pi_i = 1$
 $p(x) = \sum_{i=0}^k \pi_i f_i(x)$

 $p(x) = \pi_0 N(x|\mu_0, \Sigma_0) + \pi_1 N(x|\mu_1, \Sigma_1) + \ldots + \pi_k N(x|\mu_k, \Sigma_k)$

$$p(x) = \sum_{i=0}^{k} \pi_i N(x|\mu_k, \Sigma_k)$$

Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is said to be *complete*, whereas that in (b) is *incomplete*. (c) The same samples in which the colours represent the value of the responsibilities $\gamma(z_{nk})$ associated with data point x_n , obtained by plotting the corresponding point using proportions of red, blue, and green ink given by $\gamma(z_{nk})$ for k = 1, 2, 3, respectively

Latent Variable

Graphical representation of a Gaussian mixture model for a set of N i.i.d. data points $\{x_n\}$, with corresponding latent points $\{z_n\}$, where n = 1, ..., N.

The random variables $z^{(i)}$ indicate which of the k Gaussians each $x^{(i)}$ had come from. Note that if we knew what the $z^{(i)}$'s were, the maximum likelihood problem would have been easy. Specifically, we could then write down the likelihood as

$$\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{m} \log p(x^{(i)} | z^{(i)}; \mu, \Sigma) + \log p(z^{(i)}; \phi).$$

Maximizing this with respect to ϕ , μ and Σ gives the parameters:

$$\phi_{j} = \frac{1}{m} \sum_{i=1}^{m} 1\{z^{(i)} = j\},\$$

$$\mu_{j} = \frac{\sum_{i=1}^{m} 1\{z^{(i)} = j\}x^{(i)}}{\sum_{i=1}^{m} 1\{z^{(i)} = j\}},\$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{m} 1\{z^{(i)} = j\}(x^{(i)} - \mu_{j})(x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} 1\{z^{(i)} = j\}}$$

Indeed, we see that if the $z^{(i)}$'s were known, then maximum likelihood estimation becomes nearly identical to what we had when estimating the parameters of the Gaussian discriminant analysis model, except that here the $z^{(i)}$'s playing the role of the class labels.¹

However, in our density estimation problem, the $z^{(i)}$'s are *not* known. What can we do?