Expectation Maximization

Mohsen Afsharchi

Expectation Maximization

The EM algorithm is an iterative algorithm that has two main steps. Applied to our problem, in the E-step, it tries to "guess" the values of the $z^{(i)}$'s. In the M-step, it updates the parameters of our model based on our guesses. Since in the M-step we are pretending that the guesses in the first part were correct, the maximization becomes easy. Here's the algorithm:

In the E-step, we calculate the posterior probability of our parameters the $z^{(i)}$'s, given the $x^{(i)}$ and using the current setting of our parameters. I.e., using Bayes rule, we obtain:

$$p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma) = \frac{p(x^{(i)} | z^{(i)} = j; \mu, \Sigma) p(z^{(i)} = j; \phi)}{\sum_{l=1}^{k} p(x^{(i)} | z^{(i)} = l; \mu, \Sigma) p(z^{(i)} = l; \phi)}$$

Here, $p(x^{(i)}|z^{(i)} = j; \mu, \Sigma)$ is given by evaluating the density of a Gaussian with mean μ_j and covariance Σ_j at $x^{(i)}; p(z^{(i)} = j; \phi)$ is given by ϕ_j , and so on. The values $w_j^{(i)}$ calculated in the E-step represent our "soft" guesses² for the values of $z^{(i)}$.

EM Algorithm

}

Repeat until convergence: {

(E-step) For each i, j, set

$$w_j^{(i)} := p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma)$$

(M-step) Update the parameters:

$$\phi_{j} := \frac{1}{m} \sum_{i=1}^{m} w_{j}^{(i)},$$

$$\mu_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} x^{(i)}}{\sum_{i=1}^{m} w_{j}^{(i)}},$$

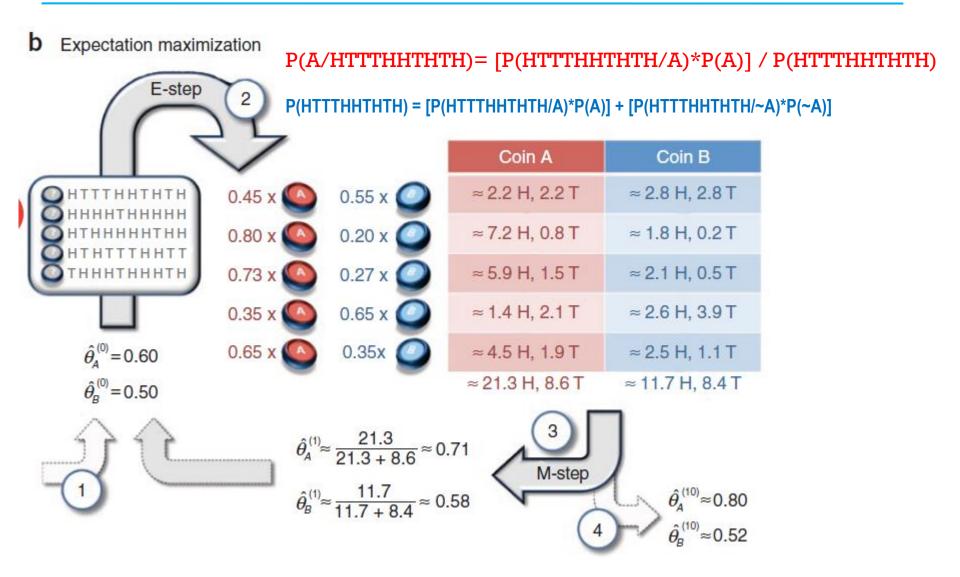
$$\Sigma_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} w_{j}^{(i)}}$$

Example

a Maximum likelihood

linouu			
	Coin A	Coin B	
ннтнтн		5 H, 5 T	
тнннн	9 H, 1 T		$\hat{\theta}_{A} = \frac{24}{24+6} = 0.80$
нннтнн	8 H, 2 T		â 9 o. (5
ттннтт		4 H, 6 T	$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$
тнннтн	7 H, 3 T		
s per set	24 H, 6 T	9 H, 11 T	

Example



Example

