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Discriminative Approach

Consider a classification problem in which we want to learn to distinguish
between elephants (y = 1) and dogs (y = 0), based on some features of
an animal. Given a training set, an algorithm like logistic regression or
the perceptron algorithm (basically) tries to find a straight line—that is, a
decision boundary—that separates the elephants and dogs. Then, to classify
a new animal as either an elephant or a dog, it checks on which side of the
decision boundary it falls, and makes its prediction accordingly.

Algorithms that try to learn p(y|z) directly (such as logistic regression),
or algorithms that try to learn mappings directly from the space of inputs A
to the labels {0, 1}, (such as the perceptron algorithm) are called discrim-
inative learnine aleorithms.



Generative Approach

Here's a different approach. First, looking at elephants, we can build a
model of what elephants look like. Then, looking at dogs. we can build a
separate model of what dogs look like. Finally, to classify a new animal, we
can match the new animal against the elephant model, and match it against
the dog model, to see whether the new animal looks more like the elephants
or more like the dogs we had seen in the training set.

Here, we'll talk about algorithms that instead
try to model p(x|y) (and p(y)). These algorithms are called generative
learning algorithms. For instance, if y indicates whether an example is a
dog (0) or an elephant (1), then p(z|y = 0) models the distribution of dogs’
features, and p(z|y = 1) models the distribution of elephants’ features.



-
Generative Approach
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Gaussian Discriminant Analysis

Multivariate Normal Distribution =
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Example: bivariate normal density
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Some Examples

Here're some examples of what the density of a Gaussian distribution

looks like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix ¥ = [ (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Y = 0.6/; and in the rightmost figure shows one with , > = 21.
We see that as ¥ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”
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More Examples

The figures above show Gaussians with mean 0, and with covariance
matrices respectively
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Varying Covariance Matrix

Here’s one last set of examples generated by varying X:

The plots above used, respectively,
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Gaussian Discriminant Analysis Model

y ~ Bernoulli(¢)
zly=0 ~ N(uo,X)
zly=1 ~ N(u1,%)
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Log Likelihood
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Pictorial Interpretation
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Shown in the figure are the training set, as well as the contours of the
two Gaussian distributions that have been fit to the data in each of the
two classes. Note that the two Gaussians have contours that are the same
shape and orientation, since they share a covariance matrix ¥, but they have
different means pp and py. Also shown in the figure is the straight line
giving the decision boundary at which p(y = 1|z) = 0.5. On one side of
the boundary, we’ll predict y = 1 to be the most likely outcome, and on the
other side, we'll predict y = 0.



-
Naive Bayes

To model p(x|y), we will therefore make a very strong assumption. We will
assume that the x;’s are conditionally independent given y. This assumption
is called the Naive Bayes (NB) assumption, and the resulting algorithm is
called the Naive Bayes classifier. For instance, if y = 1 means spam email;
“buy” is word 2087 and “price” is word 39831; then we are assuming that if
[ tell you y = 1 (that a particular piece of email is spam), then knowledge
of zops7 (knowledge of whether “buy” appears in the message) will have no
effect on your beliefs about the value of 3983, (whether “price” appears).
More formally, this can be written p(xas7|y) = p(z20s7|y, 230831). (Note that
this is not the same as saying that zoosy and x30831 are independent, which
would have been written “p(zo0s7) = p(@20s7|730s31)”; rather, we are only
assuming that xogsy and x93 are conditionally independent given y.)

p(fL‘1 ’E5Dggg|y)
— P( |:U) (I2|y1 ’?31) (I3|y 33113’:2) P(fﬂmt}ﬂ[ﬂy L1yenns 5349999)

= p(x1|y)p(z2|y)p(x3ly) - - - p(xs0000|Y)

71

— Hp Izly

i=1



-
Naive Bayes

Our model is parameterized by ¢;j,=1 = p(x; = 1|y = 1), ¢ijy=0 = p(z; =
1|y = 0), and ¢, = p(y = 1). As usual, given a training set {(2¥,y{));i =
l,...,m}, we can write down the joint likelihood of the data:
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Laplace Smoothing
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Example

The Bayes Naive classifier selects the most likely classification V,,;, given the attribute values ay, as, ... an.
This results in:

Vap = argmaxvjEvP(trj} H P(a;|v;) (1)
We generally estimate P(a;|v;) using m-estimates:
Ne + Mp
Pla;lvj) = ——— 2
(@ifoy) = @
where:
n=  the number of training examples for which v = v;
n. = number of examples for which v = v; and a = a;
p=  aprioriestimate for P(a;|v;)

m = theequivalent sample size
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Example

data set
Example No. | Color  Type Origin | Stolen?
1 Red  Sports Domestic Yes
2 Red  Sports Domestic No
3 Red  Sports Domestic Yes
4 Yellow Sports Domestic No
5 Yellow Sports Imported Yes
6 Yellow SUV  Imported No
7 Yellow SUV  Imported Yes
8 Yellow  SUV ~ Domestic No
9 Red SUV  Imported No
10 Red  Sports Imported Yes

Looking at P(Red|Yes), we have 5 cases where v; = Yes , and in 3 of those cases a; = Red. So for
P(Red|Yes), n="5and n. = 3. Note that all attribute are binary (two possible values). We are assuming
no other information so, p =1 / (number-of-attribute-values) = 0.5 for all of our attributes. Our m value
is arbitrary, (We will use m = 3) but consistent for all attributes. Now we simply apply eqauation (3)
using the precomputed values of n, n,, p, and m.

3+3%.5 24+3%.5
P(Red|Yes) = 22> _ 56 P(Red|No) = =22 _ 43
5+3 5+3
P(SUV|Yes) = 1+3+.5 — 31 P(SUV|No) = 3+3+.5 — 56
5+3 5+ 3
P(Domestic|Yes) = w = .43 P(Domestic|No) = w = .56
5+3 5+ 3



-
Example

We have P(Yes) = .5 and P(No) = .5, so we can apply equation (2). For v = Yes, we have
P(Yes) * P(Red | Yes) * P(SUV | Yes) * P(Domestic|Yes)

= .5 * 56 * 31 * .43 = .037
and for v = No, we have

P(No) * P(Red | No) * P(SUV | No) * P (Domestic | No)

= .5 * 43 * 56 * .56 = .069

Since 0.069 > 0.037, our example gets classified as "NO’



