Logistic Regression Classifier

Mohsen Afsharchi

TOC

- Linear Regression (Reminder)

Logistic Regression

- Regression based explanation
 - Linear regression and classification
 - Logistic regression model
 - Cost function
 - Parameter optimization
 - Multi-class problem
- Bayesian based explanation
 - Sigmoid/Logistic function

Linear Regression (1/3)

- The goal is to make quantitative (real valued) predictions on the basis of a (vector of) features or attributes
- Example: predicting house price from 4 attributes

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
γ				ι []
Features			7	Farget value

- We need to

- specify the class of functions (e.g., linear)
- select how to measure prediction loss
- solve the resulting minimization problem

Linear Regression (2/3)

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

- How to find the parameters $\theta_0, \theta_1, \ldots, \theta_n$?
 - → Given data, minimize the difference between real values and prediction values (prediction loss)
 - : Gradient descent algorithm
- How to measure the prediction loss?
 - → Cost function

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Linear Regression (3/3)

Gradient descent algorithm

Parameters: $\theta_0, \theta_1, \ldots, \theta_n$

Cost function: $J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

TOC

Linear Regression (Reminder)

Logistic Regression

Regression based explanation

- Linear regression and classification
- Logistic regression model
- Cost function
- Parameter optimization
- Multi-class problem
- Bayesian based explanation
 - Sigmoid/Logistic function

Linear regression and classification

Classification

Email: Spam / Not Spam? Online Transactions: Fraudulent (Yes / No)? Tumor: Malignant / Benign ?

 $y \in \{0, 1\}$ 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor)

Logistic regression model (1/3)

■ Linear Regression Model → Logistic Regression Model

Regression Parameters

 $\pi(x) = \exp(\alpha + \beta x) / (1 + \exp(\alpha + \beta x))$

When $x = -\alpha / \beta$, $\alpha + \beta x = 0$ and hence $\pi(x) = 1/(1+1) = 0.5$

The slope of $\pi(x)$ when $\pi(x)=.5$ is $\beta/4$.

Thus β controls how fast $\pi(x)$ rises from 0 to 1.

Logistic regression model (2/3)

• Want $0 \le h_{\theta}(x) \le 1$

How?
→Logistic function / Sigmoid function

• Linear Regression: $h_{\theta}(x) = \theta^T x$

• Logistic Regression: $h_{\theta}(x) = g(\theta^T x)$; $g(z) = \frac{1}{1+e^{-z}}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic regression model (3/3)

Interpretation of Hypothesis output

• $h_{\theta}(x)$ = estimated probability that y=1 on input x

 $=P(y=1 \mid x;\theta)$

- Threshold classifier output $h_{\theta}(x)$ at 0.5:
 - If $h_{\theta}(x) \ge 0.5$, predict y=1
 - If $h_{\theta}(x) < 0.5$, predict y=0

Cost function (1/4)

- How to find the best parameters?

- → Similar to linear regression: gradient descent Algorithm
- → But, different cost function

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

Cost function (2/4)

Logistic regression cost function

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
Cost $\to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1 | x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Cost function (3/4)

Logistic regression cost function

Cost function (4/4)

Logistic regression cost function

$$\operatorname{Cost}(h_{\theta}(x^{(i)}, y^{(i)}) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

= $-\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$

Parameter optimization

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

= $-\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$

To fit parameters θ :

 $\min_{\theta} J(\theta)$

To make a prediction given new x:

Output $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Multi-class problem

How to adopt logistic regression classification for multiclass problem?

[multi-class]

?

Threshold classifier output $h_{\theta}(x)$ at 0.5: If $h_{\theta}(x) \ge 0.5$, predict y=1 If $h_{\theta}(x) < 0.5$, predict y=0

Multi-class problem

Multi-class problem

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y = i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_i h_{\theta}^{(i)}(x)$$