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Some History

I Probabilistic models such as Bayesian nets are
now accepted in AI

I It was not always so . . .
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The problem with probability

I People currently vastly outperform any AI
systems in inter- acting with the world

I People do not seem to use probabilistic
inference to cope with uncertainty - do we?

I ”The information necessary to assign numerical probabili-
ties is not ordinarily available. Therefore, a formalism that
required numerical probabilities would be
epistemologically inadequate.” (McCarthy and Hayes, MI
4, 1969)
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The problem...(2)

I We may not know the probability of our train
being canceled, but we still cope with the
uncertainty that this possibility engenders.

I Intelligence often identified with symbolic
reasoning, not numerical reasoning

I Therefore do not use probability
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Logic
I Represent knowledge about the world with facts and rules

• bird(tweety).

• fly(X) :- bird(X)

I Use a theorem-prover to reason about the world. Prolog is
a very simple one

• ?- fly(tweety)

• yes

I If a conclusion follows from given premises A, B, C, then it
also follows from any larger set of premises, as long as the
original premises A, B, C, are included
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non monotonic Logic
I This won’t work outside of toy domains:non tautologous

certain rules are hard to find

I In many instances of ordinary or everyday reasoning,
people arrive to conclusions only tentatively, based on
partial or incomplete information

I This reserves the right to retract those conclusions should
they learn new facts

I non-monotonic, because the set of accepted conclusions
can become smaller when the set of premises is
expanded.
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non monotonic Logic
I Replace ”Birds fly” with ”Birds normally fly”

• Let K = bird(X) Ã fly(X), penguin(X) Ã ¬fly(X)

• K,bird(tweety) ` fly(tweety)

• K,bird(tweety), penguin(tweety) 0 fly(tweety)

I No one thing which is called ”non-monotonic logic” but
rather a family of different formalisms: i.e. default logic
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Extending Logic: Rules and ...
How do we interpret ifA −→m B

1. If you see A, then you are given the license to update the
certainty of B by certain amount which is a function of the
rule strength m. Certainty Factor

2. The set of worlds in which A and ¬B hold simultaneously
has low likelihood and hence should be excluded with
probability m. Dempster-Shafer Theory

3. Among all worlds satisfying A, those that also satisfying B

constitute an m percent majority. Bayesian Formalism
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Extensional vs Intensional Approach
I Extensional:certainty of formula is defined to be unique

function of the certainty of its subformulas

• The certainty of A ∧ B is given by some function of the
certainty measure assigned to A and B individually.(e.g. the
minimum or the product)

I Intensional: certainty measures are assigned to sets of
worlds, and the connectives combine sets of worlds by set
theory operations.

• P (A ∧ B) = P (A).P (B) True???

I A trade-off between semantic accuracy and
computational feasibility.
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Extensional Systems
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Extensional Systems (2)

A → B =⇒ if you see A in the knowledge base, then regardless of what

other things the knowledge base contains and regardless of how A was

derived, you are given the license to assert B and add it to the

database.

I Locality:regardless of other things

I Detachment:regardless of how it was derived
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Limits of Modularity
R1 = If the ground is wet the assume it rained (with

certainty c1)

I Does the truth of ”The ground is wet” permit us to increase
the certainty of ”It rained”?

• ”The sprinkler was on”

• ”The neighbor’s grass is dry ”

I Imposing a connection between ”sprinkle was on” and ”It
rained” defeats the spirit of modularity(i.e. locality) by forcing the
rule writer to pack together items of information that are only
remotely related.
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Limits of Modularity (2)

(K → P ∧ P → Q) =⇒ K → Q

I Does chaining apply here?

• ”If the sprinkler was on then the ground is wet”

• ”If the ground is wet then it rained ”

I Violation of detachment
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Example

I From effect to cause

• ”Radio → Earthquake”

I From cause to effect

• ”Earthquake → Alarm ”

I If A(Alarm) then B(Burglary); and A becomes more credible, then
B becomes less credible.

I In contrast with local belief updating
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Bidirectional Inferences
If A → B, then finding the truth value of B makes A more

credible

I Reasoning in both ways, from A to B and from B to A.

• ”Fire implies smoke”

• ”Smoke makes fire more credible”

I Do we need two separate rules to perform these
inferences??




