OPTICAL CHARACTER RECOGNITION USING HIDDEN MARKOV MODELS Jan Rupnik

OUTLINE

- HMMs
 - Model parameters
 - Left-Right models
 - Problems
- OCR Idea
- Symbolic example
- Training
- Prediction
- Experiments

HMM

- Discrete Markov model : probabilistic finite state machine
- Random process: random memoryless walk on a graph of nodes called states.
- Parameters:
 - Set of states $S = \{S_1, ..., S_n\}$ that form the nodes
 - Let q_t denote the state that the system is in at time t
 - Transition probabilities between states that form the edges, $a_{ij} = P(q_t = S_i \mid q_{t-1} = S_i), 1 \le i,j \le n$
 - Initial state probabilities, $\pi_i = P(q_1 = S_i)$, $1 \le i \le n$

Pick q_1 according to the distribution π

$$q_1 = S_2$$

Move to a new state according to the distribution a_{ij}

$$q_2 = S_3$$

Move to a new state according to the distribution a_{ij}

$$q_3 = S_5$$

HIDDEN MARKOV PROCESS

- The Hidden Markov random process is a partially observable random process.
- Hidden part: Markov process q_t
- Observable part: sequence of random variables with the same domain v_t , where conditioned on the variable q_i the distribution of the variable v_i is independent of every other variable, for all i = 1,2,...
- Parameters:
 - Markov process parameters: π_i , a_{ij} for generation of q_t
 - Observation symbols $V = \{V_1, \dots, V_m\}$
 - Let v_t denote the observation symbol emitted at time t.
 - Observation emission probabilities $b_i(k) = P(v_t = V_k | q_t = S_i)$
- Each state defines its own distribution over observation symbols

LEFT RIGHT HMM

- Sparse and easy to train
- Parameters
 - $\pi_1 = 1$, $\pi_i = 0$, i > 1
 - $a_{ij} = 0 \text{ if } i > j$
- Left-right HMM example

PROBLEMS

- Given a sequence of observations $v_1, ..., v_T$ find the sequence of hidden states $q_1, ..., q_T$ that most likely generated it.
- Solution: Viterbi algorithm (dynamic programming, complexity: $O(Tn^2)$)
- How to determine the model parameters π_i , a_{ij} , $b_i(k)$?
- Solution: Expectation Maximization (EM) algorithm that finds the local maximum of the parameters, given a set of initial parameters π_i^0 , a_{ii}^0 , $b_i(k)^0$.

OPTICAL CHARACTER RECOGNITION

Input for **training** of the OCR system: pairs of word images and their textual strings

Input for the **recognition** process: a word image

IDEA

- The modelling of the generation of character images is accomplished by generating sequences of thin vertical images (segments)
- Build a HMM for each character separately (model the generation of images of character 'a', 'b',...)
- Merge the character HMMs into the word HMM (model the generation of sequences of characters and their images)
- Given a new image of a word, use the word HMM to predict the most likely sequence of characters that generated the image.

SYMBOLIC EXAMPLE

- Example of word images generation for a two character alphabet {'n', 'u'}.
- Set S = $\{S_u^1, ..., S_u^5, S_n^1, ..., S_n^5\}$
- Set $V = \{V_1, V_2, V_3, V_4\}$
- Assign to each V_i a thin vertical image:
- The word model (for words like 'unnunuuu' is constructed by joining two left-right character models.

Word model state transition architecture

WORD MODEL

0.05

1

0.95

Su3 Su4

Su5

V	1 '	2	v 3	v 4		Su5	0.33				
В	V1	V2	V3	V4							
Sn1	1	V 2									
Sn2			0.05	0.95		-					7
Sn3		1									
Sn4			0.05	0.95							
Sn5	1										_
Su1	1										
Su2		0.05		0.95	\/		\/	\	/	\/	

Α	Sn1	Sn2	Sn3	Sn4	Sn5	Su1	Su2	Su3	Su4	Su5
Sn1	0.5	0.5								
Sn2		0.5	0.5							
Sn3			0.5	0.5						
Sn4				0.5	0.5					
Sn5	0.33				0.33	0.33				
Su1						0.5	0.5			
Su2							0.5	0.5		
Su3								0.5	0.5	
Su4									0.5	0.5
Su5	0.33					0.33				0.33

 V_4 V_4 V_2 V_2 V_4 V_4 V_1

A sequence of observation symbols that correspond to an "image" of a word

EXAMPLE OF IMAGES OF GENERATED WORDS

Example: word 'nunnnuuun'

Example: word 'uuuunununu'

RECOGNITION

Find best matching patterns

 $S_n^{1}S_n^{2}S_n^{2}S_n^{3}S_n^{4}S_n^{5}S_n^{1}S_n^{1}S_n^{2}S_n^{3}S_n^{3}S_n^{3}S_n^{4}S_n^{4}S_n^{5}...$ $...S_n^{1}S_n^{1}S_n^{2}S_n^{3}S_n^{4}S_n^{4}S_n^{4}S_n^{4}S_n^{4}S_n^{5}S_n^{1}S_n^{1}$

Look at transitions of type $S_*^5 S_{**}^1$ to find transitions from character to character

Predict: 'nnn'

FEATURE EXTRACTION, CLUSTERING, DISCRETIZATION

- Discretization: if we have a set of basic patterns (thin images of the observation symbols), we can transform any sequence of thin images into a sequence of symbols (previous slide) – the input for our HMM.
- We do not deal with images of thin slices directly but rather with some feature vectors computed from them (and then compare vectors instead of matching images).
- The basic patterns (feature vectors) can be found with k-mean clustering (from a large set of feature vectors).

FEATURE EXTRACTION

continuity

- •Transformation of the image into a sequence of 20-dimensional feature vectors.
- •Thin overlapping rectangles split into 20 vertical cells.
- •The feature vector for each rectangle is computed by computing the average luminosity of each cell.

CLUSTERING

- Given a large set of feature vectors (100k) extracted from the training set of images and compute the kmeans clustering with 512 clusters.
- Eight of the typical feature vectors:

TRAINING

GATHERING OF TRAINING EXAMPLES

Input: images of words

Output: instances of character images

FEATURE EXTRACTION

CLUSTERING

Input: instances of character images **Output**: a sequence of 20-dimensional vectors per character intance

Input: all feature vectors computed in the previous step, number of clusters Output: a set of centroid vectors C

GET CHARACTER TRANSITION PROBABILITIES

Input: large corpus of text

Output: character transition probabilities

DISCRETIZATION

Input: a sequence of feature vectors for every character instance, C

Output: a sequence of discrete symbols for every character instance

Input: character transition probabilities,

character HMMs Output: word HMM **Input**: a sequence of observation symbols for each

character instance

Output: separately trained character HMMs for each

character

PREDICTION

An image of a word that is to be recognized

continuity

Input: image of a word
Output: sequence of
20-dimensional vectors

Set of 20-dimensional centroid vectors C, computed in the **training phase**.

WORD MODEL computed in the **training phase**.

VITERBI DECODING

Input: word HMM and a sequence of observation symbols

Output: sequence of states that most likely emitted the observations.

DISCRETIZATION

Input: sequence of feature vectors for the image of a word, C computed in training phase

Output: a sequence of symbols from a finite alphabet for the image of a word

PREDICTION

Input: sequence of states
Output: sequence of

characters

'c' 'o' 'n' 't' 'i' 'n' 'u' 'i' 't' 'y'

EXPERIMENTS

 Book on French Revolution, John Emerich Edward Dalberg-Acton (1910) (source: archve.org)

I

THE HERALDS OF THE REVOLUTION

THE revenue of France was near twenty millions when Lewis XVI., finding it inadequate, called upon the nation

- Test word error rate on the words containing lower-case letters only.
- Approximately 22k words on the first 100 pages

EXPERIMENTS – DESIGN CHOICES

- Extract 100 images of each character
- Use 512 clusters for discretization
- Build 14-state models for all characters, except for 'i', 'j' and 'l' where we used 7-state models, and 'm' and 'w' where we used 28-state models.
- Use character transition probabilities from [1]
- Word error rate: 2%

[1] Michael N. Jones; D.J.K. Mewhort, Case-sensitive letter and bigram frequency counts from large-scale English corpora, *Behavior Research Methods, Instruments, & Computers, Volume 36, Number 3*, August 2004, pp. 388-396(9)

TYPICAL ERRORS

Places where the system predicted transitions between character models

Predicted: **proposled**. We see that the there is a short strip between 'o' and 's' where the system predicted an 'I'.

Predicted: **inifluences**. The system interpreted the character 'c' and the beginning of character 'e' as an 'o', and it predicted an extra 'i'.

Predicted: **dennocratic**. The character 'm' was predicted as a sequence of two 'n' characters.

QUESTIONS?

