Sample space

- Sample space (population) Ω :
 - Set of possible outcomes of some experiment.
 - Example:
 - Experiment: randomly select a student among all UST postgraduate students.
 - Sample space Ω : the set of all UST postgraduate students.

The set of possible outcomes of an "experiment" is called the sample space

- Throwing a six sided die: {1, 2, 3, 4, 5, 6}.
- Will Denmark win the world cup: {yes,no}.
- The values in a deck of cards: $\{2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A\}$.
- Elements of the sample spaces are called samples.
 - Subsets of sample spaces are **events**.
- Examples:
 - Sample space Ω : the set of all UST postgraduate students.
 - $E_{\text{female}} = \{\text{female students}\}$ the randomly selected student is a female.
 - $\mathbf{E}_{\mathsf{male}} = \{\mathsf{male} \; \mathsf{students}\}\$ the randomly selected student is a male.
 - E_{MPhil} = {MPhil students} the randomly selected student is an MPhil student.
 - E_{PhD} = {PhD students} the randomly selected student is a PhD student.
- The event that we will get an even number when throwing a die: $\{2,4,6\}$.
- The event that Denmark wins: {yes}.
- The event that we will get a 6 or below when drawing a card: $\{2, 3, 4, 5, 6\}$.

Probability measure

■ A probability measure is a mapping from the set of events to [0, 1]

$$P:2^{\Omega}\rightarrow [0,1]$$

that satisfies Kolmogorov's axioms:

- **1** $P(\Omega) = 1$.
- 2 $P(A) \ge 0 \ \forall A \subseteq \Omega$
- **3 Additivity**: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
- Example:
 - \blacksquare Sample space Ω : the set of all UST postgraduate students.
 - Define probability measure: $P(A) = |A|/|\Omega|$.
 - $P(E_{\text{female}}) = \text{`fraction of female postgraduate students}$

Random Variables

- Random variable X:
 - Function defined over sample space.
 - Example:
 - Gender of (randomly selected) student,
 - Programme of (randomly selected) student
- Domain of a random variable Ω_X :
 - \blacksquare the set of possible states of X.
 - Example:

$$\Omega_{Gender} = \{f, m\}$$

 \blacksquare For any state x of a random variable X, let

$$\Omega_{X=x} = \{\omega \in \Omega | X(\omega) = x\}$$

This is an event

- Example: $\Omega_{\mathsf{Gender}=\mathsf{f}} = \{ \mathsf{female} \; \mathsf{postgraduate} \; \mathsf{students} \; \mathsf{in} \; \mathsf{UST} \} = E_{\mathsf{female}}.$
- \blacksquare Note: we use upper case letters, e.g. X, for variables and lower case letters, e.g. x, for states of variables.
- Note the difference between Ω_X and $\Omega_{X=x}$

Probability mass function (distribution)

■ **Probability mass function** of a random variable *X*:

$$P(X):\Omega_X\to [0,1]$$

$$P(X = x) = P(\Omega_{X = x})$$

- Examples:

 - $P(\text{Gender=f}) = P(E_{\text{female}}) = 1/6 \text{ (Assumption)}$ $P(\text{Gender=m}) = P(E_{\text{male}}) = 5/6.$ $P(\text{Programme=MPhil}) = P(E_{\text{MPhil}}) = 1/3 \text{ (Assumption)}$
 - $P(Programme=PhD) = P(E_{PhD}) = 2/3.$

Because of Kolmogorov's axioms, a probability mass function completely determines a probability measure.

Frequentist interpretation

- Frequentist interpretation:
- Probability is long term frequency
- Example:
 - X is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the frequency of getting heads approaches 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:
 - X_i : result of the i-th tossing; 1 H, 0 T
 - Law of Large Numbers:

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n X_i}{n}=\frac{1}{2}\qquad\text{with probability }1$$

■ The frequentist interpretation is meaningful only when experiment can be repeated.

Subjectivist interpretation

- Probabilities are logically consistent degrees of beliefs.
- Comes into play when experiment not repeatable.
- Depends on a person's background knowledge.
- Subjective: another person with different background knowledge might have different probability.
- Experiment not repeatable. If I go to library and find out the truth, my background knowledge is no longer the same.
- The subjectivist interpretation was not widely accepted until 1970s

- This is a major reason why probability theory did not play a big role in Al before 1980.
 - Because probability was defined as statistical frequency and hence was seen as a technique that was appropriate only when statistical data were available.
 - Not many interesting applications with statistical data at that time. Now, more common.
- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.
 - As we will learn later, probability has a numerical aspect as well as a structural aspect.
 - We will rely more on the subjectivity interpretation when it comes to building structures than estimating numbers. Our belief on "causality" often plays an important role when building structures.
- The subjectivist interpretation makes concepts such as conditional independence easy to understand.

Joint probability mass function

■ **Probability mass function** of a random variable *X*:

$$P(X):\Omega_X\to[0,1]$$

- Suppose there are n random variables X_1, X_2, \ldots, X_n .
- A joint probability mass function, $P(X_1, X_2, ..., X_n)$, over those random variables is:
 - a probability mass function defined on the Cartesian product of their state spaces:

$$\prod_{i=1}^n\Omega_{X_i} o [0,1]$$

Joint probability distribution

- The joint distribution $P(X_1, X_2, ..., X_n)$ contains information about all aspects of the relations among the n random variables.
- In theory, one can answer any query about relations among the variables based on the joint probability.

■ Example:

- Population: Apartments in Hong Kong rental market.
- Random variables: (of a random selected apartment)
 - Monthly Rent: {low $(\leq 1k)$, medium ((1k, 2k]), upper medium((2k, 4k]), high $(\geq 4k)$ },
 - Type: {public, private, others}
- Joint probability distribution P(Rent, Type):

	public	private	others
low	.17	.01	.02
medium	.44	.03	.01
upper medium	.09	.07	.01
high	0	0.14	0.1

■ What is the probability of a randomly selected apartment being a public one?

$$\label{eq:pulic} \begin{split} P(\mathsf{Type=pulic}) &= P(\mathsf{Type=public}, \ \mathsf{Rent=low}) + P(\mathsf{Type=public}, \\ \mathsf{Rent=medium}) + P(\mathsf{Type=public}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \\ P(\mathsf{Type=public}, \ \mathsf{Rent=high}) &= .7 \end{split}$$

$$\label{eq:private} \begin{split} P(\mathsf{Type=private}) = & \ P(\mathsf{Type=private}, \ \mathsf{Rent=low}) + \ P(\mathsf{Type=private}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \\ & \ P(\mathsf{Type=private}, \ \mathsf{Rent=high}) = .25 \end{split}$$

	public	private	others	P(Rent)
low	.17	.01	.02	.2
medium	.44	.03	.01	.48
upper medium	.09	.07	.01	.17
high	0	0.14	0.1	.15
P(Type)	.7	.25	.05	

■ Called marginal probability because written on the margins.

Marginal probability

$$\mathsf{P}(\mathsf{Type}) = \sum_{\mathsf{Rent}} \mathsf{P}(\mathsf{Type},\,\mathsf{Rent})$$

- The operation is called marginalization: Variable "Rent" is marginalized from the joint probability P(Type, Rent).
- Notations for more general cases:

$$P(X,Y) = \sum_{U,V} P(X,Y,U,V).$$

 $lack Y \subset \{X_1, X_2, \dots, X_n\}, \ lack Z = \{X_1, X_2, \dots, X_n\} - lack Y,$

$$P(\mathbf{Y}) = \sum_{\mathbf{7}} P(X_1, X_2, \dots, X_n)$$

- A joint probability gives us a full picture about how random variables are related.
- Marginalization lets us to focus one aspect of the picture.

The probabilistic approach to reasoning under uncertainty

- A problem domain is modeled by a list of variables X_1, X_2, \ldots, X_n ,
- Knowledge about the problem domain is represented by a joint probability $P(X_1, X_2, ..., X_n)$.

Example: Alarm (Pearl 1988)

- Story: In LA, burglary and earthquake are not uncommon. They both can cause alarm. In case of alarm, two neighbors John and Mary may call.
- Problem: Estimate the probability of a burglary based who has or has not called.
- Variables: Burglary (B), Earthquake (E), Alarm (A), JohnCalls (J), MaryCalls (M).
- Knowledge required by the probabilistic approach in order to solve this problem:

P(B.	Ε.	Α.	J.	M	١
, ,	υ,	_ ,	<i>,</i> .,	٠,		ı

В	Ε	Α	J	М	Prob	В	É	Α	J	М	Prob
У	У	У	У	У	.00001	n	У	У	У	У	.0002
у	У	У	У	n	.000025	n	У	у	У	n	.0004
у	У	У	n	у	.000025	n	У	У	n	У	.0004
У	У	У	n	n	.00000	n	У	У	n	n	.0002
у	У	n	У	У	.00001	n	У	n	У	У	.0002
у	У	n	у	n	.000015	n	У	n	У	n	.0002
у	У	n	n	у	.000015	n	У	n	n	У	.0002
у	У	n	n	n	.0000	n	У	n	n	n	.0002
у	n	У	У	у	.00001	n	n	У	У	У	.0001
у	n	у	У	n	.000025	n	n	У	У	n	.0002
у	n	У	n	у	.000025	n	n	у	n	У	.0002
у	n	У	n	n	.0000	n	n	У	n	n	.0001
у	n	n	У	У	.00001	n	n	n	У	У	.0001
у	n	n	У	n	.00001	n	n	n	У	n	.0001
у	n	n	n	У	.00001	n	n	n	n	У	.0001
у	n	n	n	n	.00000	n	n	n	n	n	.996

Inference with joint probability distribution

- What is the probability of burglary given that Mary called, P(B=y|M=y)?
- Compute marginal probability:

$$P(B, M) = \sum_{E,A,J} P(B, E, A, J, M)$$

В	M	Prob
У	У	.000115
У	n	.000075
n	у	.00015
n	n	.99971

■ Compute answer (reasoning by conditioning):

$$P(B=y|M=y) = \frac{P(B=y, M=y)}{P(M=y)}$$

= $\frac{.000115}{.000115 + 000075} = 0.61$

Conditional probability

 \blacksquare For events A and B:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

- Meaning:
 - \blacksquare P(A): my probability on A (without any knowledge about B)
 - P(A|B): My probability on event A assuming that I know event B is true.
- What is the probability of a randomly selected private apartment having "low" rent?

$$P(Rent=low|Type=private)$$

= $\frac{P(Rent=Low, Tpe=private)}{P(Type=private)}$ = .01/.25=.04

In contrast:

$$P(Rent=low) = 0.2.$$

Properties of Conditional Probability

 The conditional probability of an event A, given an event B with P(B) > 0, is defined by

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)},$$

and specifies a new (conditional) probability law on the same sample space Ω . In particular, all properties of probability laws remain valid for conditional probability laws.

- Conditional probabilities can also be viewed as a probability law on a new universe B, because all of the conditional probability is concentrated on B.
- · If the possible outcomes are finitely many and equally likely, then

$$\mathbf{P}(A \mid B) = \frac{\text{number of elements of } A \cap B}{\text{number of elements of } B}.$$

Example 1.9. Radar Detection. If an aircraft is present in a certain area, a radar detects it and generates an alarm signal with probability 0.99. If an aircraft is not present, the radar generates a (false) alarm, with probability 0.10. We assume that an aircraft is present with probability 0.05. What is the probability of no aircraft presence and a false alarm? What is the probability of aircraft presence and no detection?

 $A = \{ \text{an aircraft is present} \},$

 $B = \{ \text{the radar generates an alarm} \},$

 $A^c = \{ \text{an aircraft is not present} \},$

 $B^c = \{ \text{the radar does not generate an alarm} \}.$

$$\mathbf{P}(\text{not present, false alarm}) = \mathbf{P}(A^c \cap B) = \mathbf{P}(A^c)\mathbf{P}(B \mid A^c) = 0.95 \cdot 0.10 = 0.095,$$
$$\mathbf{P}(\text{present, no detection}) = \mathbf{P}(A \cap B^c) = \mathbf{P}(A)\mathbf{P}(B^c \mid A) = 0.05 \cdot 0.01 = 0.0005.$$

■ P(Rent|Type)

	public	private	others
low	.17/.7	.01/.25	.02/.05
medium	.44/.7	.03/.25	.01/.05
upper medium	.09/.7	.07/.25	.01/.05
high	0/.7	0.14/.25	0.1/.05

■ Note that

$$\sum_{Rent} P(Rent|Type) = 1.$$

Marginal independence

- Two random variables X and Y are marginally independent, written $X \perp Y$, if
 - \blacksquare for any state x of X and any state y of Y,

$$P(X=x|Y=y) = P(X=x)$$
, whenever $P(Y=y) \neq 0$.

- Meaning: Learning the value of Y does not give me any information about X and vice versa. Y contains no information about X and vice versa.
- Equivalent definition:

$$P(X=x, Y=y) = P(X=x)P(Y=y)$$

Shorthand for the equations:

$$P(X|Y) = P(X), P(X,Y) = P(X)P(Y).$$

- Examples:
 - X:result of tossing a fair coin for the first time, Y: result of second tossing of the same coin.
 - X: result of US election, Y: your grades in this course.
- Counter example: X oral presentation grade , Y project report grade.

Conditional independence

■ Two random variables X and Y are conditionally independent given a third variable Z, written $X \perp Y | Z$, if

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

- Meaning:
 - If I know the state of Z already, then learning the state of Y does not give me additional information about X.
 - \blacksquare Y might contain some information about X.
 - \blacksquare However all the information about X contained in Y are also contained in Z.
- Shorthand for the equation:

$$P(X|Y,Z) = P(X|Z)$$

■ Equivalent definition:

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.
- X_i : result of the *i*-th tossing, Y: whether the coin is produced by the malfunctioning machine.
- The X_i 's are not marginally independent of each other:
 - If I get 9 heads in first 10 tosses, then the coin is probably a biased coin. Hence the next tossing will be more likely to result in a head than a tail.
 - Learning the value of X_i gives me some information about whether the coin is biased, which in term gives me some information about X_i .

- \blacksquare However, they are conditionally independent given Y:
 - If the coin is not biased, the probability of getting a head in one toss is 1/2 regardless of the results of other tosses.
 - If the coin is biased, the probability of getting a head in one toss is 80% regardless of the results of other tosses.
 - If I already knows whether the coin is biased or not, learning the value of X_i does not give me additional information about X_i .

Total Probability Theorem

Total Probability Theorem

Let A_1, \ldots, A_n be disjoint events that form a partition of the sample space (each possible outcome is included in exactly one of the events A_1, \ldots, A_n) and assume that $\mathbf{P}(A_i) > 0$, for all i. Then, for any event B, we have

$$\mathbf{P}(B) = \mathbf{P}(A_1 \cap B) + \dots + \mathbf{P}(A_n \cap B)$$

= $\mathbf{P}(A_1)\mathbf{P}(B \mid A_1) + \dots + \mathbf{P}(A_n)\mathbf{P}(B \mid A_n).$

Example 1.13. You enter a chess tournament where your probability of winning a game is 0.3 against half the players (call them type 1), 0.4 against a quarter of the players (call them type 2), and 0.5 against the remaining quarter of the players (call them type 3). You play a game against a randomly chosen opponent. What is the probability of winning?

Let A_i be the event of playing with an opponent of type i. We have

$$P(A_1) = 0.5,$$
 $P(A_2) = 0.25,$ $P(A_3) = 0.25.$

Also, let B be the event of winning. We have

$$P(B | A_1) = 0.3, P(B | A_2) = 0.4, P(B | A_3) = 0.5.$$

Thus, by the total probability theorem, the probability of winning is

$$\mathbf{P}(B) = \mathbf{P}(A_1)\mathbf{P}(B \mid A_1) + \mathbf{P}(A_2)\mathbf{P}(B \mid A_2) + \mathbf{P}(A_3)\mathbf{P}(B \mid A_3)$$
$$= 0.5 \cdot 0.3 + 0.25 \cdot 0.4 + 0.25 \cdot 0.5$$
$$= 0.375.$$

Prior, posterior, and likelihood

- **Prior probability**: belief about a hypothesis h before obtaining observations, P(h).
 - Example: Suppose 10% of people suffer from Hepatitis B. A doctor's prior probability about a new patient suffering from Hepatitis B is 0.1.
- Posterior probability:belief about a hypothesis after obtaining observations.
- **Likelihood** of hypothesis given observation:
 - Conditional probability of observation given hypothesis L(h|o) = P(o|h)
 - Example: o: eye-color=yellow; h_1 : Hepatitis B; h_2 : no Hepatitis B

$$P(o|h_1) > P(o|h_2)$$

If we observe o, h_1 is more likely than h_2 . As a function of h, P(o|h) measures the likelihood of h.

Bayes' Theorem

■ Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(h|o) = \frac{P(h)P(o|h)}{P(o)} \propto P(h)P(o|h) = P(h)L(h|o)$$

where P(o) is normalization constant to ensure $\sum_h P(h|o) = 1$.

In words: posterior \propto prior \times likelihood

■ Example:

$$P(\mathsf{disease}|\mathsf{symptoms}) = \frac{P(\mathsf{disease})P(\mathsf{symptoms}|\mathsf{disease})}{P(\mathsf{symptoms})}$$

- \blacksquare P(symptom|disease) from understanding of disease,
- \blacksquare P(disease|symptoms) needed in clinical diagnosis.

Let us return to the radar detection problem

$$A = \{\text{an aircraft is present}\},\$$

 $B = \{\text{the radar generates an alarm}\}.$

We are given that

$$P(A) = 0.05, P(B|A) = 0.99, P(B|A^c) = 0.1.$$

Applying Bayes' rule, with $A_1 = A$ and $A_2 = A^c$, we obtain

$$\begin{split} \mathbf{P}(\text{aircraft present} \mid \text{alarm}) &= \mathbf{P}(A \mid B) \\ &= \frac{\mathbf{P}(A)\mathbf{P}(B \mid A)}{\mathbf{P}(B)} \\ &= \frac{\mathbf{P}(A)\mathbf{P}(B \mid A)}{\mathbf{P}(A)\mathbf{P}(B \mid A) + \mathbf{P}(A^c)\mathbf{P}(B \mid A^c)} \\ &= \frac{0.05 \cdot 0.99}{0.05 \cdot 0.99 + 0.95 \cdot 0.1} \\ &\approx 0.3426. \end{split}$$

Let us return to the chess problem

$$P(A_1) = 0.5$$
, $P(A_2) = 0.25$, $P(A_3) = 0.25$.

Also, B is the event of winning, and

$$P(B|A_1) = 0.3,$$
 $P(B|A_2) = 0.4,$ $P(B|A_3) = 0.5.$

Suppose that you win. What is the probability $P(A_1 | B)$ that you had an opponent of type 1?

Using Bayes' rule, we have

$$\mathbf{P}(A_1 \mid B) = \frac{\mathbf{P}(A_1)\mathbf{P}(B \mid A_1)}{\mathbf{P}(A_1)\mathbf{P}(B \mid A_1) + \mathbf{P}(A_2)\mathbf{P}(B \mid A_2) + \mathbf{P}(A_3)\mathbf{P}(B \mid A_3)}$$
$$= \frac{0.5 \cdot 0.3}{0.5 \cdot 0.3 + 0.25 \cdot 0.4 + 0.25 \cdot 0.5}$$
$$= 0.4.$$

In 1964 an interracial couple was convicted of robbery in Los Angeles, largely on the grounds that they matched a highly improbable profile, a profile which fit witness reports [272]. In particular, the two robbers were reported to be

- A man with a mustache
- Who was black and had a beard
- And a woman with a ponytail
- Who was blonde
- The couple was interracial
- And were driving a yellow car

The prosecution suggested that these characteristics had the following probabilities of being observed at random in the LA area:

- 1. A man with a mustache 1/4
- 2. Who was black and had a beard 1/10
- 3. And a woman with a ponytail 1/10
- 4. Who was blonde 1/3
- 5. The couple was interracial 1/1000
- 6. And were driving a yellow car 1/10

$$P(e|\neg h) = \prod_{i} P(e_i|\neg h) = 1/12000000$$

$$e_i \ (i = 1, \dots, 6), \text{ the joint evidence } e$$

A Much better estimate

$$P(e_2|\neg h)P(e_3|\neg h)P(e_4|\neg h)P(e_6|\neg h) = 1/3000.$$

The Bayesian approach

$$P(h|e) = \frac{P(e|h)P(h)}{P(e|h)P(h) + P(e|\neg h)P(\neg h)}$$

$$P(h|e) = \frac{P(h)}{P(h) + P(\neg h)/3000}$$

6.5 million people

this gives us 1,625,000 eligible males and as many females

$$P(h|e) = \frac{1/1625000}{1/1625000 + (1 - 1/1625000)/3000} \approx 0.002$$