Sample space

m Sample space (population) Q:

m Set of possible outcomes of some experiment.

m Example:
B Experiment: randomly select a student among all UST postgraduate

students.
m Sample space Q: the set of all UST postgraduate students.

The set of possible outcomes of an “experiment” is called the sample space
® Throwing a six sided die: {1,2,3,4,5,6}.
® Will Denmark win the world cup: {yes,no}.
® The valuesin a deck of cards: {2,3,4,5,6,7,8,9,10, J,Q, K, A}.

m Elements of the sample spaces are called samples.

m Subsets of sample spaces are events.

m Examples:
m Sample space €2 the set of all UST postgraduate students.
B Efoale = {female students}
the randomly selected student is a female.
m E. e = {male students}
the randomly selected student is a male.
m Epppil = {MPhil students}
the randomly selected student is an MPhil student.
m Ep,,p = {PhD students}
the randomly selected student is a PhD student.

® The event that we will get an even number when throwing a die: {2,4, 6}.
® The event that Denmark wins: {yes}.

® The event that we will get a 6 or below when drawing a card: {2, 3,4,5,6}.



Probability measure

m A probability measure is a mapping from the set of events to [0, 1]
P22 —10,1]

that satisfies Kolmogorov's axioms:
1 P(Q) =1
2 P(A)>0VACQ
3 Additivity: P(AUB) = P(A)+P(B)if ANB =0.
m Example:

m Sample space €2: the set of all UST postgraduate students.
m Define probability measure: P(A) = |A|/|Q].

B P(Efemale) = ‘fraction of female postgraduate students

Random Variables

m Random variable X:

m Function defined over sample space.
m Example:

m Gender of (randomly selected) student,
B Programme of (randomly selected) student

m Domain of a random variable Qx:

m the set of possible states of X.
m Example:

QGender = {f,m}

m For any state x of a random variable X, let
Qx—x = {w € QX (w) = x}

This is an event



m Example:
QGender—f = 1 female postgraduate students in UST} = Eq5e-

m Note: we use upper case letters, e.g. X, for variables and lower case
letters, e.g. x, for states of variables.

m Note the difference between (2x and Qx_,

Probability mass function (distribution)

m Probability mass function of a random variable X:
P(X):Qx — [0,1]
P(X - X) - P(QX:X)

m Examples:

P(Gender=f) = P(Efgmale) = 1/6 (Assumption)

m P(Gender=m) = P(Ec) = 5/6.

m P(Programme=MPhil) = P(Epqppil) = 1/3 (Assumption
m P(Programme=PhD) = P(Ep,,p) = 2/3.

Because of Kolmogorov’s axioms, a probability mass function completely
determines a probability measure.



Frequentist interpretation

m Frequentist interpretation:

m Probability is long term frequency

m Example:

m X is result of coin tossing. Qx = {H,T}
m P(X=H) = 1/2 means that

m the frequency of getting heads approaches 1/2 as the number of tosses
goes to infinite.

m Justified by the Law of Large Numbers:
m X;: result of the i-th tossing; 1 - H, 0 — T
m Law of Large Numbers:

lim Lia X == with probability 1
n

n— o0

m [ he frequentist interpretation is meaningful only when experiment
can be repeated.

Subjectivist interpretation

m Probabilities are logically consistent degrees of beliefs.

m Comes into play when experiment not repeatable.

m Depends on a person's background knowledge.

m Subjective: another person with different background knowledge might
have different probability.

m Experiment not repeatable. If | go to library and find out the truth, my
background knowledge is no longer the same.

m | he subjectivist interpretation was not widely accepted until 1970s



m [ his is a major reason why probability theory did not play a big role
in Al before 1980.
m Because probability was defined as statistical frequency and hence was

seen as a technique that was appropriate only when statistical data
were available.

m Not many interesting applications with statistical data at that time.
Now. more common.

m Now both interpretations are accepted. In practice, subjective beliefs
and statistical data complement each other.

m We rely on subjective beliefs (prior probabilities) when data are scarce.
m As more and more data become available, we rely less and less on
subjective beliefs.

m As we will learn later, probability has a numerical aspect as well as a
structural aspect.

m We will rely more on the subjectivity interpretation when it comes to
building structures than estimating numbers. Our belief on “causality”
often plays an important role when building structures.

m [ he subjectivist interpretation makes concepts such as conditional
independence easy to understand.



Joint probability mass function

m Probability mass function of a random variable X:
P(X):Qx —[0,1]

m Suppose there are n random variables X1, X5, ..., X,.

m A joint probability mass function, P(X1, X5, ..., X,), over those
random variables is:

m a probability mass function defined on the Cartesian product of their
state spaces:

[]ax —[01]
i=1
Joint probability distribution

m The joint distribution P(X1, Xo,...,X,) contains information about
all aspects of the relations among the n random variables.

m In theory, one can answer any query about relations among the
variables based on the joint probability.



m Example:

m Population: Apartments in Hong Kong rental market.
m Random variables: (of a random selected apartment)
m Monthly Rent: {low (< 1k), medium ((1k, 2k]), upper medium((2k,
4k]), high (>4k)},
m Type: {public, private, others}
m Joint probability distribution P(Rent, Type):

public private others
low 17 01 .02
medium 44 .03 .01
upper medium .09 .07 .01
high 0 0.14 0.1

m What is the probability of a randomly selected apartment being a
public one?
P(Type=pulic) = P(Type=public, Rent=Ilow)+P(Type=public,
Rent=medium)+ P(Type=public, Rent=upper medium)+
P(Type=public, Rent=high) = .7
P(Type=private) = P(Type=private, Rent=Ilow)+ P(Type=private,
Rent=medium)+ P(Type=private, Rent=upper medium)+

P(Type=private, Rent=high)= .25

public private others | P(Rent)
low 17 01 .02 2
medium 44 .03 .01 48
upper medium .09 .07 .01 17
high 0 0.14 0.1 15
P(Type) 7 25 .05

m Called marginal probability because written on the margins.




Marginal probability

P(Type) = Z P(Type, Rent)
Rent

m [he operation is called marginalization: Variable “Rent” is
marginalized from the joint probability P(Type, Rent).

m Notations for more general cases:

PIX.Y)=> P(X.Y.U.V)
U,

<

m A joint probability gives us a full picture about how random variables
are related.

m Marginalization lets us to focus one aspect of the picture.



The probabilistic approach to reasoning under uncertainty

m A problem domain is modeled by a list of variables Xi, X5, ..., X,

m Knowledge about the problem domain is represented by a joint probability
P(X1,X5,. .., X,).

Example: Alarm (Pearl 1988)

m Story: In LA, burglary and earthquake are not uncommon. They both can
cause alarm. In case of alarm, two neighbors John and Mary may call.

m Problem: Estimate the probability of a burglary based who has or has not
called.

m Variables: Burglary (B), Earthquake (E), Alarm (A), JohnCalls (J),
MaryCalls (M).

m Knowledge required by the probabilistic approach in order to solve this

problem:
P(B.E.A, J, M)
P(B,E,A, J, M)
BIE[A|J]|M Prob BIE|A|[J]| M| Prob
ylylyly]|y .00001 nly|yly]|]y | .0002
yly [y |y n|.000025)| n|y |y ]|y| n | .0004
yly|ly|[n]|y [.000025( n|y |y |[n]|y | .0004
yly|ly|n]|n .00000 nljy |y /|[n]| n | .0002
yly|n|y]| y | .00001 nly|[nflyly | .0002
yly|[n]|y ]| n|.000005| n|y|n|y]| n | .0002
yly|[n|{n|y |.000005|] n|y|n|n|y | .0002
yly|[n|n]|n .0000 n|ly|n{nj|n|.0002
y[nl|lyl|ly]|y .00001 n|n|yi|ly]|]y|.0001
y[n|{y |y n|.000025)| n|n|y |y | n | .0002
y[nl{y |[n|y |.000025)| n|njy|n|y | .0002
y[n|y|[n]|n .0000 n|in|y|{n]| n|.0001
y[n|n|y]|y .00001 n|in|nify]|y|.0001
y[n|nj|y]|n .00001 n|in|nify]| n|.0001
y{n|{n|n|y .00001 n|in|ni{njy |.0001
y{n|{n|{n]|n .00000 n|in|njf{nj|n .996




Inference with joint probability distribution

m What is the probability of burglary given that Mary called, P(B=y|M=y)?
m Compute marginal probability:

P(B.M)= > P(B.E.A.J.M)

EAJ
B | M Prob
y | y | .000115
y | n | .000075
nilvy .00015
ni|n 99971
m Compute answer (reasoning by conditioning):
P(B=y.M=y)
P(B=y|M=y
ESla2 P(M=y)
.000115

0.61

000115 + 000075

Conditional probability

m For events A and B:

P(AIB) =

m Meaning:
m P(A): my probability on A (without any knowledge about B)
m P(A|B): My probability on event A assuming that | know event B is
true.

m What is the probability of a randomly selected private apartment
having “low” rent?
P(Rent=low| Type=private)
_ P(Rent=Low, Tpe=private) B
- P(Type—private) = .01/.25=.04

In contrast:
P(Rent=low) = 0.2.



Properties of Conditional Probability

e The conditional probability of an event A, given an event B with

P(B) = 0, is defined by

P(A N B)

P(4|B)=—5m

and specifies a new (conditional) probability law on the same sample
space 1. In particular. all properties of probability laws remain valid
for conditional probability laws.

¢ Conditional probabilities can also be viewed as a probability law on a
new universe B, because all of the conditional probability is concen-
trated on B.

¢ [f the possible outcomes are finitely many and equally likely. then

number of elements of AN B
number of elements of B

P(A|B) =

Example 1.9. Radar Detection. If an aircraft is present in a certain area, a
radar detects it and generates an alarm signal with probability 0.99. If an aircraft is
not present, the radar generates a (false) alarm, with probability 0.10. We assume
that an aircraft is present with probability .05, What is the probability of no
aircraft presence and a false alarm? What is the probability of aircraft presence
and no detection?

A = {an aircraft is present},

B = {the radar generates an alarm},

A® = {an aircraft is not present},

B® = {the radar does not generate an alarm}.



Adreraft present

P(A)=0.05

P(A) = 0.95

Adreraft not present

A
-

& %

P (not present, false alarm) = P(A° N B) = P(A9)P(B|A%) =0.95-0.10 = 0.095,
P(present, no detection) = P(A N B%) = P(A)P(B“| A) = 0.05-0.01 = 0.0005.

m P(Rent|Type)

public  private others

low 17/.7 .01/25 .02/.05
medium 44/7 .03/25 .01/.05
upper medium | .09/.7 .07/.25 .01/.05
high O_f.? 0.14_;".25 0.1_;'!.05

m Note that
ZRent P(Rent| Type) =1.



Marginal independence

m [wo random variables X and Y are marginally independent, written

X LY, if
m for any state x of X and any state y of Y,

P(X=x|Y=y) = P(X=x), whenever P(Y =y) #£ 0.
m Meaning: Learning the value of Y does not give me any information
about X and vice versa.Y contains no information about X and vice

versa.
m Equivalent definition:

P(X=x,Y=y)=P(X=x)P(Y=y)

m Shorthand for the equations:
P(X]Y) = P(X). P(X.Y) = P(X)P(Y).

m Examples:

m X:result of tossing a fair coin for the first time,
Y': result of second tossing of the same coin.
m X: result of US election, Y: your grades in this course.

m Counter example: X — oral presentation grade , Y — project report

grade.



Conditional independence

Two random variables X and Y are conditionally independent given a
third variable Z,written X 1 Y|Z, if

P(X=x|Y=y.Z=z) = P(X=x|Z=z) whenever P(Y=y,Z=z) #0

Meaning:

m /f | know the state of Z already, then learning the state of Y does not
give me additional information about X.
m Y might contain some information about X.

m However all the information about X contained in Y are also contained
in Z.

Shorthand for the equation:
P(X|Y.Z)= P(X|Z)
Equivalent definition:

P(X.Y|Z)= P(X|Z)P(Y|Z)

There is a bag of 100 coins. 10 coins were made by a malfunctioning
machine and are biased toward head. Tossing such a coin results in
head 80% of the time. The other coins are fair.

m Randomly draw a coin from the bag and toss it a few time.
m X;: result of the /-th tossing, Y: whether the coin is produced by the
malfunctioning machine.

The X;'s are not marginally independent of each other:

m If | get 9 heads in first 10 tosses, then the coin is probably a biased
coin. Hence the next tossing will be more likely to result in a head than
a tail.

m Learning the value of X; gives me some information about whether the
coin is biased, which in term gives me some information about Xj.

oss Toss L @
Result Resul E@:



m However, they are conditionally independent given Y':
m If the coin is not biased, the probability of getting a head in one toss is
1/2 regardless of the results of other tosses.
m If the coin is biased, the probability of getting a head in one toss is
80% regardless of the results of other tosses.
m If | already knows whether the coin is biased or not, learning the value
of X; does not give me additional information about Xj.

Total Probability Theorem

Total Probability Theorem

Let Ay, ..., A, be disjoint events that form a partition of the sample space
(each possible outcome is included in exactly one of the events Aq,. .., An)
and assume that P(A4;) > 0, for all 7. Then, for any event B, we have

P(B)=P(A1nNB)+---+P(A, N B)
= P(A)P(B|A;) + -+ P(4,)P(B|A,).

A, NB

A;NB




Example 1.13. You enter a chess tournament where your probability of winning
a game is 0.3 against half the players (call them type 1), 0.4 against a quarter of
the players (call them type 2), and 0.5 against the remaining quarter of the players
(call them type 3). You play a game against a randomly chosen opponent. What
is the probability of winning?

Let A; be the event of playing with an opponent of type ¢. We have

P(A;) =05 P(A)) =025  P(A3)=0.25
Also, let B be the event of winning. We have

P(B|A1)=03, P(B|A2)=04, P(B

A3) =05,

Thus, by the total probability theorem, the probability of winning is

P(B)=P(A41)P(B| A1) + P(A2)P(B | A2) + P(A3)P(B| As)
=05-03+0.25-04+40.25-0.5
= 0.375.

Prior, posterior, and likelihood

m Prior probability: belief about a hypothesis h before obtaining
observations, P(h).

m Example: Suppose 10% of people suffer from Hepatitis B. A doctor's
prior probability about a new patient suffering from Hepatitis B is 0.1.

m Posterior probability:belief about a hypothesis after obtaining
observations.

m Likelihood of hypothesis given observation:

m Conditional probability of observation given hypothesis L(h|o) = P(o|h)
m Example: o: eye-color=yellow; hy: Hepatitis B; hy: no Hepatitis B

P(o|hy) > P(o|h2)

If we observe o, hy is more likely than h;.
As a function of h, P(o|h) measures the likelihood of h.



Bayes' Theorem

m Bayes' Theorem: relates prior probability, likelihood, and posterior
probability:

P(h)P(olh)
P (o)

where P(0) is normalization constant to ensure ), P(h|o) = 1.

P(h|o) = ~ P(h)P(o|h) = P(h)L(h|o)

In words: posterior ~ prior x likelihood

m Example:
P(disease) P(symptoms|disease)
P(symptoms)

P(disease|symptoms) =

(symptom|disease) from understanding of disease,
(disease|symptoms) needed in clinical diagnosis.

T o

Cause 1: Cause 3:
malignant tumor other \

Canse 2:
nonmalignant
tumor




Let us return to the radar detection problem

A = {an aircraft is present},

B = {the radar generates an alarm}.
We are given that
P(A) =005  P(B|A)=099, P(B|A")=o0.1.
Applving Bayes' rule, with A1 = A and As = A°, we obtain

P(aircraft present |alarm) = P(A | B)
_P(AP(B|A)
- P(B)
_ P(AP(B|A)
 P(AYP(B|A)+ P(A5)P(B| A=)
_ 0.05 - 0.99
~ 0.05-0.9940.95-0.1
72 0.3426.

Let us return to the chess problem

P(A;1) =05,  P(A) =025  P(Aa) = 0.25.
Also, B is the event of winning, and
P(B|A1)=0.3, P(B|Az2) =04, P(B| Az) = 0.5.

Suppose that you win. What is the probability P{A4; | B) that vou had an opponent

of type 17
Using Bayes' rule, we have

P(A1)P(B| A1)
P(ANP(B| A1)+ P{A2)P(B | A2) + P(Aa)P(B| Aa)

B 0.5-0.3
 05-034025.0440.25.05

P(A1| B) =

= 0.4



In 1964 an interracial couple was convicted of robbery in Los Angeles, largely on
the grounds that they matched a highly improbable profile, a profile which fit witness
reports [272]. In particular, the two robbers were reported to be

A man with a mustache

Who was black and had a beard

And a woman with a ponytail

¢ Who was blonde

The couple was interracial

And were driving a yellow car

The prosecution suggested that these characteristics had the following probabilities
of being observed at random in the LA area:
1. A man with a mustache 1/4
Who was black and had a beard 1/10
And a woman with a ponytail 1/10
Who was blonde 1/3
The couple was interracial 1/1000

(= B R S I

And were driving a yellow car 1/10

—h) = H P(e;

e; (1 =1,...,6), the joint evidence e

P(e —h) = 1/12000000

A Much better estimate
P((32|_131)P(E;~; |_IhJ)P(E4 |_|h-)P(€ﬁ |_lh) = 1/3000

The Bayesian approach

P(e|h)P(h)
h)P(h) + P(e|~h)P(=h)

P(hle) =

P(h)
(h) + P(—h)/3000

P(hle) =



6.5 million people
this gives us 1,625,000 eligible males and as many females

1/1625000
P(hle) = ~ 0.002
(hle) = 1 71625000 + (1 — 1/1625000)/3000 ~ -0




