
Using Augmented Genetic Algorithm for Search-Based

Software Testing

Zahir Hasheminasab11, Zaniar Sharifi1, Khabat Soltanian1, Mohsen Afsharchi1

1 Zanjan University, Zanjan 45371-38791, Iran

Zahir.hashemi,Zaniar.sharifi,K.soltanian,Afsharchim(@znu.ac.ir)

Abstract. Automatic test case generation has been received great attention by

researchers. Evolutionary algorithms have increasingly gained special places as

means of automating the test data generation for software testing. Genetic algo-

rithm is the most commonplace algorithm in search-based software testing. One

of the key issues of search-based testing is the inefficient and inadequate in-

formed fitness function due to the rigidness of fitness landscape. To deal with

this problem, in this paper we improved a recently published fundamental ap-

proach where a new criterion, branch hardness factor is used to calculate fitness.

However, the existing methods are unable to cover the whole of the targets.

Herein, we added a local search strategy to the standard genetic algorithm for

faster convergence and providing more intensification. In addition, different se-

lection and mutation operators are examined and appropriate choices selected.

Our approach gained remarkable efficiencies on 7 standard benchmarks. The re-

sults showed that adding local search is likely to boost another search-based al-

gorithm for path coverage even.

Keywords: genetic algorithm; path coverage testing; automatic test data gener-

ation.

1 Introduction

Nowadays, using software production is becoming more and more indispensable in

daily life, therefore role of software testing is being highlighted for verifying quality of

software. Approximately 50 percent of software development process cost is being con-

sumed on Software testing [1]. Moreover, this process is a time consuming and tedious

process, since it is done manually. Therefore, automated software testing is being eval-

uated as the indispensable method to decline time and cost.

There are different types of testing criteria, which are classified into two testing strat-

egies, such as black-box testing and white-box testing [2]. Black box testing, is a soft-

ware testing method which the code block being tested is not known, whereas white-

box testing is respected to only the implementation of items that can be tested.

1 Corresponding author

mailto:Zahir.hasheminasaba@znu.ac.ir

2

In the other word, in white box testing the internal structure of the program under

test is known for tester.

Generally Speaking, the main goal of software testing is to generate test cases satis-

fying test criteria. A test case is a set of conditions or variables under which the tester

will determine whether a system under test satisfied requirements or works correctly.

Test case generation approaches based on the algorithm can be classified to static

methods and dynamic methods.

Static methods are software testing techniques in which the software is tested with-

out executing the code. They comprise symbolic execution [4] and domain reduction

[5, 6]. Although these methods have had important successes, they still face challenges

in managing handles indefinite loops, array, procedure calls and pointer references in

any tested program [7].

In symbolic execution method, instead of using actual value, symbolic value is being

used, i.e., variable of 𝑥 and 𝑦 are considered with 𝑥1 and 𝑥2 respectively. In this method

at every point of implementation, symbolic value of program variable and path con-

straint are presented as a rational formula on the symbolic values of the program vari-

ables. For access to that point, the path constraints must be "true". In addition, the path

constraints are determined by the logical expressions used in the branches, which are

updated with each branch. Any combination of real inputs, for which the value of the

path constraint is "true", it could be considered as a program input that guarantees the

execution of the desired path. In this method, we must use constraint solvers to find the

actual values in order to produce the test case. These approaches can determine infea-

sible paths simply. In these methods, constraints solvers have been used to find the

actual values in order to produce the test case. Therefore, the efficiency of the method

is strongly dependent on the efficiency of solver and the calculation of host hardware.

Moreover, in case of non-linear branch conditions, static methods have significant over-

head cost.

Dynamic methods involve in testing the software for the input values and analyze

the output values according to the generated input. In fact, dynamic methods generate

input values for program under test and the comprise random testing, local search ap-

proach [8], goal-oriented approach [5], chaining approach [9] and evolutionary ap-

proach [9, 10-13]. In these methods, the software is tested by inserting inputs and meas-

uring the number of target paths covered by the software. Moreover, due to predefined

of input variables determined during the execution of the program, the production of

dynamic test data can prevent those problems encountered by static methods.

Hybrid methods combine the advantages of static methods (like reducing domain

of problem) with the benefits that can be obtained from the dynamic methods (such as

reducing the costs), combination methods have been developed [17].

All of method evaluations are based on different criteria. There are different test

criteria, such as instruction coverage, branch coverage and path coverage.

Instructions Coverage: In this case, it is necessary to select input data from the

problem space that all instructions are executed at least once.

branch coverage: The input data is selected from the problem space that all the

branches are executed at least once [3].

3

Path coverage: the input data is selected from the problem domain that all the paths

are traversed at least once.

This paper addresses path coverage. In particular, consider the most difficult paths.

It used the hybrid method that the symbolic execution as static method and evolutionary

algorithm as dynamic method selected to generate test data generation.

In this paper, one of the most recent works in the field of static and dynamic methods

for test data generation has been improved. In [17], by combining the previous fitness

functions and improving them, they developed a new fitness function for the genetic

algorithm. In this paper, by using the proposed silent function, as well as changing in

the main architecture of the genetic algorithm, a new approach is developed in the field

of automatic test data generation. The proposed method has been experimented on the

7 standard benchmarks introduced in [21]. The results and performance demonstrated

a significant improvement in the efficiency and effectiveness of the software testing.

The remainder of this paper is organized as follows: The second section and the third

section introduce background and related work in this area respectively. Genetic algo-

rithm and our approach in detail are presented in the fourth section. In the five section,

the proposed method is applied to 7 standard benchmarks and provided the illustrative

experiments that compared with recent papers and the last section gives the conclusion

and future work to the paper.

2 Background

Most of fitness functions in software testing research area are based on approach level

[15] and branch distance [16] which are two approaches to calculate generated test cases

fitness functions. Approach level was proposed [15] and calculate test cases fitness

function by enumerating remained branches to execute to gain the target branch. Branch

distance factor is the test case’s distance from satisfying a branch’s condition. In other

word, a number must be added or subtracted from the test case to satisfy the condition.

Consequently, this two-fitness factor combine together to improve fitness functions ac-

curacy which calculate by following equation:

𝑓𝐴𝐿(𝑖) = 𝑙𝑒𝑣𝑒𝑙(𝑏) + 𝜂(𝑖, 𝑏)

In above equation 𝑙𝑒𝑣𝑒𝑙(𝑏) is approach level and 𝜂(𝑖, 𝑏) is the branch distance.

Discussed approaches did not consider executed branches, therefore Symbolic En-

hanced Fitness Function was proposed by harmen et al at 2011 [17]. They add a simple

static analysis. i.e., symbolic executor to evolutionary algorithms for software testing.

It calculates the cost of that a test case can satisfy all branch conditions with a normal-

ized branch distance. By mean that this approach attends all executed and non-executed

branches. This approaches equation is calculating as follow equation:

𝑓𝑆𝐸(𝑖) = ∑ 𝜂(𝑖, 𝑏)
𝑏𝜖𝑃

In [14] by portion of Symbolic Enhanced Fitness Function, proposed a factor for

determining branches hardness level and calculate test cases finesses according to the

4

branches harnesses. formulated the hardness considering two main factors, first one is

number of variables in the branch condition(α(c)) which extracted by Symbolic ana-

lyzer and second one is the branch conditions tightness(β(c)) Which is ratio of number

of solutions in the problem’s domain to the size of domain. It also used a reinforcement

coefficient to tunes effect of these two discussed factors in calculation of branches hard-

ness. their hardness factor is calculated as follow:

DC(c)=𝐵2×α(c)+B×β(c)+1

This hardness is as a punishment to test cases who cannot satisfy the branch. And its

related fitness function calculation is as the following equation:

𝑓𝐷𝐶(𝑖, 𝐶) = ∑ 𝐷𝐶(𝑐) ×

𝑐𝜖𝐶

 𝜂(𝑖, 𝑏)

For example consider 𝑖1 = (10, −30,60), 𝑖2 = (30, −20, −20) as two test cases and

figure 1 as our source code.

Figure. 1 Example source code [14]

There are three branches in this source code in lines: 2, 3 and 4. This program

branches hardness’s has been calculated as:

DC(“y==z”)=102 × 0.5 + 10 × 0.995 + 1 = 60.95

DC(“y>0”)=102 × 1 + 10 × 0.5 + 1 = 106

DC(“x=10”)=102 × 1 + 10 × 0.995 + 1 = 110.95

Therefore 𝑖1 and 𝑖2 finesses would be:

𝑓𝐷𝐶(𝑖1, 𝐶) = 60.95 ×
90

91
+ 106 ×

31

32
+ 110.95 ×

0

1
= 162.9677

𝑓𝐷𝐶(𝑖2, 𝐶) = 60.95 ×
0

1
+ 106 ×

21

22
+ 110.95 ×

20

21
= 206.8485

According to their fitness values 𝑖1 had been preferred than 𝑖2.

5

3 Related work

In this section, we review the most important methods that centered around different

meta-heuristic algorithms.

In [14] benefited from both static and dynamic approaches advantages. it extracts

some information from path conditions using static analyzing. the information had been

used for defining more exact population instead of random initialization of the first

population for GA.

After 2014 most of researchers concentrate on guiding Genetic algorithm to faster

converge which that leaded to decrease in calculation costs. Accordingly, to that de-

signing an appropriate fitness function considered by researchers. In [14] proved that

branches have no equivalent values according to their hardness. It means that satisfying

a harder branch is more valuable, therefore a test case who satisfies harder branches is

more valuable. So they had been defining hardness factor to determining each branch

harnesses, which has been used in fitness function equation [18].

In [13] an approach to improve genetic algorithm efficiency proposed. They defined

their exclusive branch distance and fitness function. In addition [1] reinforced genetic

algorithm by considering a preprocessing step before performing the algorithm. They

extracted hard path conditions and used them to made a kind of adjustment for genetic

algorithm which tunes individuals for faster converging. [19] combined static and dy-

namic approaches to generating test cases, they developed their static analyzer (JDBC)

to extract path conditions, and used a search problem converter that converts extracted

path conditions to optimization problems and finally they use genetic algorithm to solve

these optimization problems. In [20] a branch hardness factor defined using probability

of visits, hence branches with fewer Expected number of visits are harder than other.

4 Proposed Approach

This section depicts details of our proposed approach, to generate test cases for path

coverage using augmented GA. By using the proposed silent function in [14], and

changing in the main architecture of the genetic algorithm, a new approach is developed

in the field of automatic test data generation.

Generally speaking, evolutionary algorithms search for a general optimal point in

the solution space, and usually cannot search locally around specific responses [22].

They could be trapped in an optimal point. In addition, sample space of software testing

problem is very extensive. Therefore, this problem would be obvious. Have the feature

of evolutionary algorithms (general search) is combined with a local search algorithm,

the results will be improved. In other words, the evolutionary algorithm first finds good

answers. Then, this area could be accurately searched by a local search algorithm to

find the optimal point. Details of our approach is described below.

6

Genetic algorithm is a search heuristic that is inspired from Charles Darwin’s theory

of natural evolution. This algorithm models the process of natural selection where the

fittest individuals are selected for reproduction in order to produce offspring for the next

generation. The process of natural selection starts with the selection of fittest individuals

from a population. They generate individuals that almost keep the characteristics of their

parents and will be added to the next generation. If parents are fitter, their offspring will

be better than parents and have a better chance at surviving. This process keeps on iter-

ating and at the end, a generation with the fittest individuals will be found. Genetic al-

gorithm has a wide application in optimization problems [23].

Based on the figure 2. (a), the genetic algorithm architecture consists of six phases:

1. Initial population to start the algorithm.

2. Population Fitness functions evaluation and assign a fitness number to each indi-

vidual.

3. Selection: select a pair of individuals as parent to make offspring.

4. Crossover: is evolution operator which exchange parents’ bits with together to

generates better individuals.

5. Mutation: mutate some bits to avoiding trapping in local optimums.

6. Replacement: replace new generated population with old one.

7

 (a) (b)

Figure. 2 (a), (b) show the architecture of traditional GA and augmented GA, respectively

In our proposed architecture showed in figure 2. (b), in addition to the above steps,

a new step is added in which selection and mutation operators are re-evaluated and

appropriate operators selected. The basis of this algorithm is inspired by the hill climb-

ing algorithm, therefore, it could be defined as a local search algorithm.

Local search. the algorithm, among the neighbors of each individual, probs the fit-

test point. To calculate neighborhood of Individual k, D-dimensional space is consid-

ered. The neighbors of Individual k with position vector 𝐼𝑁𝐷𝑘 = (𝑥𝑘1 , 𝑥𝑘2, … , 𝑥𝑘𝑑)
have a new position vector of 𝐼𝑁𝐷𝑘

́ = (𝑥𝑘1́ , 𝑥𝑘2́ , … , 𝑥𝑘𝑑́) where 𝑥𝑘1́ = 𝑥𝑘1 + 𝑝 , -500

<p<+500 and 𝑥𝑘1́ ≠ 𝑥𝑘1 that p based on a gaussian distribution is selected.

8

The rule for local search or local transfer of Individual position can be represented

as follows: Individual k transfers from 𝑥𝑘 to a new position 𝑥�́� if the fitness of 𝑥�́� is

better than that of 𝑥𝑘 (i.e., fitness(𝑥�́�)>fitness(𝑥𝑘)), and 𝑥�́� has the best fitness value

among 𝑥�́� neighbors. Otherwise, the Individual k must stay at its current position (i.e.,

𝑥𝑘).

5 Experimental results

We implemented [14] as a base and improve this approach. ran our proposed algorithm

on 7 standard benchmarks which had used them. it is Noteworthy that we had 30 runs

on each benchmark and all of presented data is averaged out 30 times of run. We com-

pared our approach with three others according to 2 factors, coverage percentage of

targets in the benchmarks and average time cost of running of each benchmark which

has been calculated using this formula:

ATC =
1

|𝑆|
∑ 𝑇𝐶𝑖𝑖𝜖𝑆

Which in the above equation S is the set of successful runs of the algorithm. And TC

is the time cost of each run individually. ATC determines the fair time cost for the

algorithm.

Table. 1 a comparison between this paper approach and others [20]

Benchmarks Fitness function approaches

 proposed approach Sakti [14] Symbolic EXE Approach level

coverage ATC(s) coverage ATC(s) Coverage ATC(s) coverage ATC(s)

Gammaq 100% 0 100% 0 66% 0.370 59% 0.309

Expint 100% 2.133 75% 2.158 31% 2.180 1% 1.495

Ei 100% 0.133 75% 0.597 77% 0.947 77% 0.685

Bessj 100% 0.541 60% 2.103 31% 2.240 6% 1.059

Bessi 100% 0.539 85.5% 2.001 51% 1.978 11% 1.406

Plgndr 100% 0 - - 0% - 0% -

Betai 100% 0 100% 1.259 70% 1.115 13% 0.938

Our results clearly prove this approach’s superiority than former approaches.

In the following diagram we can see the speed of convergence of proposed approach

against other former approaches. Figure 3 shows the percentage of coverage in the num-

ber of generations produced in five different approaches. As we can see, number of

generation that our proposed approach needed to completely cover all targets is far less

than other approaches. While other approaches in the number of generations more than

our attitude have reached 80% coverage, none of them have been able to fully cover 54

goals.

9

Fig. 3 show coverage rate of different approaches vs our approach

Tuning parameters of these papers are according to the following table:

Table.2. implementation details

Bounds [-1000,1000]

Population 100

Mutation rate 0.5

Number of comparisons in lo-

cal search for each individual

2 per each gene

6 Conclusion and Future Work

In this paper, we proposed a search-based test data generation approach to cover

Paths coverage of the program under test. By using the proposed silent function in [14],

as well as improving in the main architecture of the genetic algorithm. The experimental

results of some programs under test demonstrated that augmented GA generated test

data can cover all feasible paths having path conditions which cannot be covered by

10

test data generated from regular GA. The main reason for this superiority is due to the

local search.

Since these issues are inherently different from optimization issues, and in most

cases the level of response space is discrete, the combination of search optimization

algorithms such as linear programming with this algorithm can be very useful. There

have been some studies performed in this area that, definitely, should be used as a func-

tion of this combination. (i.e., in the initialization step, some parts of the answer can be

obtained with precise methods).

7 References

1. Dinh., Ngoc, Thi., Hieu, Dinh Vo., Thi, Dao Vu., and Viet, Ha Nguyen.: Generation of Test

Data Using Genetic Algorithm and Constraint Solver. In: Asian Conference on Intelligent

Information and Database Systems, 499-513. Springer, Cham (2017).
2. Myers, Glenford J. "77ie Art of Software Testing." (1979).

3. W, Xibo., S, Na.: Automatic Test Data Generation for Path Testing Using Genetic

Algorithms. In: Third Int. Conf. pp. 596–599, Meas (2011).

4. C, K, James., A new approach to program testing, in Proceedings of the

international conference on Reliable software. ACM, Los Angeles, California (1975).

5. T, Y, Chen., T, H, Tse., Z, Zhiquan., Semiproving.: an integrated

method based on global symbolic evaluation and metamorphic testing, international sym-

posium on Software testing and analysis. ACM, Roma (2002).

6. S, Nguyen Tran., D, Yves.: Consistency techniques for interprocedural test data generation,

Software Engineering Notes, vol. 28, 108-117, ACM SIGSOFT, (2003).

7. G, M, C C Michael., M, Schatz.: Generating software test data by

evolution, IEEE Transactions on Software Engineering, vol. 27, 1085-

1110, (2001).

8. B, Korel.: Automated software test data generation, IEEE Transactions

on Software Engineering, vol. 16, 870-879, (1990).

9. B, Korel.: Automated test data generation for programs with procedures,

in Proceedings of the 1996 ACM SIGSOFT international symposium on

Software testing and analysis , ACM, San Diego, California, United States:

(1996).

10. S, Xanthakis., C, Ellis., C, Skourlas., A, Le Gall., S, Katsikas., K,

Karapoulios.: Application of genetic algorithms to software testing, in

Proceedings of 5th International Conference on Software Engineering

and its Applications, 625-636, Toulouse, France (1992).

11. J, Wegener., A, Baresel., H, Sthamer.: Evolutionary test environment

for automatic structural testing, Information and Software Technology,

vol. 43, 841-854, (2001).

12. J, Wegener., B, Kerstin., P, Hartmut.: Automatic Test Data

Generation For Structural Testing Of Embedded Software Systems By

Evolutionary Testing, in Proceedings of the Genetic and Evolutionary

Computation Conference. Morgan Kaufmann Publishers Inc., (2002).

11

13. Thi., D.N., Hieu, V.D., Ha, N.,V.: A technique for generating test data using genetic

algorithms. International Conference on Advanced Computing and Applications. IEEE

Press, Can Tho (2016).

14. Sakti, Abdelilah., Yann-Gaël Guéhéneuc., Gilles Pesant.: Constraint-based fitness function

for search-based software testing. International Conference on AI and OR Techniques in

Constriant Programming for Combinatorial Optimization Problems. Springer, Berlin, Hei-

delberg, (2013).

15. Tracey, N., Clark, J.A., Mander, K., McDermid, J.A.: An automated framework

for structural test-data generation. In: ASE, pp. 285–288 (1998).

16. Arcuri, A.: It does matter how you normalise the branch distance in search based

software testing. In: ICST, pp. 205–214. IEEE Computer Society (2010).

17. Baars, A.I., Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Tonella, P., Vos,

T.E.J.: Symbolic search-based testing. In: Alexander, P., Pasareanu, C.S., Hosking,

J.G. (eds.) ASE, pp. 53–62. IEEE (2011).

18. Sakti, Abdelilah.: Automatic Test Data Generation Using Constraint Programming and

Search Based Software Engineering Techniques. École Polytechnique de Montréal, (2014).

19. Braione, Pietro., et al.: Combining symbolic execution and searchbased testing for programs

with complex heap inputs. In Proceedings of the 26th ACM SIGSOFT International Sym-

posium on Software Testing and Analysis. ACM, (2017).

20. Xu, Xiong., Ziming Zhu., and Li Jiao.: An adaptive fitness function based on branch hard-

ness for search based testing. In Proceedings of the Genetic and Evolutionary Computation

Conference. ACM, (2017).

21. http://www.crt.umontreal.ca/~quosseca/fichiers/23benchsCPAOR13.zip

22. Yao, X.: Evolving artificial neural networks. In Proceedings of the IEEE, vol. 87(9). pp.

1423–1447, (1999).

23. https://towardsdatascience.com/introduction-to-geneticalgorithms-including-example-

code-e396e98d8bf3

