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Abstract. Automatic test case generation has been received great attention by 

researchers. Evolutionary algorithms have increasingly gained special places as 

means of automating the test data generation for software testing. Genetic algo-

rithm is the most commonplace algorithm in search-based software testing. One 

of the key issues of search-based testing is the inefficient and inadequate in-

formed fitness function due to the rigidness of fitness landscape. To deal with 

this problem, in this paper we improved a recently published fundamental ap-

proach where a new criterion, branch hardness factor is used to calculate fitness. 

However, the existing methods are unable to cover the whole of the targets. 

Herein, we added a local search strategy to the standard genetic algorithm for 

faster convergence and providing more intensification. In addition, different se-

lection and mutation operators are examined and appropriate choices selected. 

Our approach gained remarkable efficiencies on 7 standard benchmarks. The re-

sults showed that adding local search is likely to boost another search-based al-

gorithm for path coverage even. 

Keywords: genetic algorithm; path coverage testing; automatic test data gener-

ation. 

1 Introduction 

Nowadays, using software production is becoming more and more indispensable in 

daily life, therefore role of software testing is being highlighted for verifying quality of 

software. Approximately 50 percent of software development process cost is being con-

sumed on Software testing [1]. Moreover, this process is a time consuming and tedious 

process, since it is done manually. Therefore, automated software testing is being eval-

uated as the indispensable method to decline time and cost. 

There are different types of testing criteria, which are classified into two testing strat-

egies, such as black-box testing and white-box testing [2]. Black box testing, is a soft-

ware testing method which the code block being tested is not known, whereas white-

box testing is respected to only the implementation of items that can be tested.  
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In the other word, in white box testing the internal structure of the program under 

test is known for tester. 

Generally Speaking, the main goal of software testing is to generate test cases satis-

fying test criteria. A test case is a set of conditions or variables under which the tester 

will determine whether a system under test satisfied requirements or works correctly. 

Test case generation approaches based on the algorithm can be classified to static 

methods and dynamic methods.  

Static methods are software testing techniques in which the software is tested with-

out executing the code. They comprise symbolic execution [4] and domain reduction 

[5, 6]. Although these methods have had important successes, they still face challenges 

in managing handles indefinite loops, array, procedure calls and pointer references in 

any tested program [7]. 

In symbolic execution method, instead of using actual value, symbolic value is being 

used, i.e., variable of 𝑥 and 𝑦 are considered with 𝑥1 and 𝑥2 respectively. In this method 

at every point of implementation, symbolic value of program variable and path con-

straint are presented as a rational formula on the symbolic values of the program vari-

ables. For access to that point, the path constraints must be "true". In addition, the path 

constraints are determined by the logical expressions used in the branches, which are 

updated with each branch. Any combination of real inputs, for which the value of the 

path constraint is "true", it could be considered as a program input that guarantees the 

execution of the desired path. In this method, we must use constraint solvers to find the 

actual values in order to produce the test case. These approaches can determine infea-

sible paths simply. In these methods, constraints solvers have been used to find the 

actual values in order to produce the test case. Therefore, the efficiency of the method 

is strongly dependent on the efficiency of solver and the calculation of host hardware. 

Moreover, in case of non-linear branch conditions, static methods have significant over-

head cost.  

Dynamic methods involve in testing the software for the input values and analyze 

the output values according to the generated input. In fact, dynamic methods generate 

input values for program under test and the comprise random testing, local search ap-

proach [8], goal-oriented approach [5], chaining approach [9] and evolutionary ap-

proach [9, 10-13]. In these methods, the software is tested by inserting inputs and meas-

uring the number of target paths covered by the software.  Moreover, due to predefined 

of input variables determined during the execution of the program, the production of 

dynamic test data can prevent those problems encountered by static methods.  

Hybrid methods combine the advantages of static methods (like reducing domain 

of problem) with the benefits that can be obtained from the dynamic methods (such as 

reducing the costs), combination methods have been developed [17]. 

All of method evaluations are based on different criteria. There are different test 

criteria, such as instruction coverage, branch coverage and path coverage. 

Instructions Coverage: In this case, it is necessary to select input data from the 

problem space that all instructions are executed at least once. 

branch coverage: The input data is selected from the problem space that all the 

branches are executed at least once [3]. 
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Path coverage:  the input data is selected from the problem domain that all the paths 

are traversed at least once. 

This paper addresses path coverage. In particular, consider the most difficult paths. 

It used the hybrid method that the symbolic execution as static method and evolutionary 

algorithm as dynamic method selected to generate test data generation. 

In this paper, one of the most recent works in the field of static and dynamic methods 

for test data generation has been improved. In [17], by combining the previous fitness 

functions and improving them, they developed a new fitness function for the genetic 

algorithm. In this paper, by using the proposed silent function, as well as changing in 

the main architecture of the genetic algorithm, a new approach is developed in the field 

of automatic test data generation. The proposed method has been experimented on the 

7 standard benchmarks introduced in [21]. The results and performance demonstrated 

a significant improvement in the efficiency and effectiveness of the software testing.  

The remainder of this paper is organized as follows: The second section and the third 

section introduce background and related work in this area respectively. Genetic algo-

rithm and our approach in detail are presented in the fourth section. In the five section, 

the proposed method is applied to 7 standard benchmarks and provided the illustrative 

experiments that compared with recent papers and the last section gives the conclusion 

and future work to the paper. 

 

2 Background 

Most of fitness functions in software testing research area are based on approach level 

[15] and branch distance [16] which are two approaches to calculate generated test cases 

fitness functions. Approach level was proposed [15] and calculate test cases fitness 

function by enumerating remained branches to execute to gain the target branch. Branch 

distance factor is the test case’s distance from satisfying a branch’s condition. In other 

word, a number must be added or subtracted from the test case to satisfy the condition. 

Consequently, this two-fitness factor combine together to improve fitness functions ac-

curacy which calculate by following equation: 

𝑓𝐴𝐿(𝑖) = 𝑙𝑒𝑣𝑒𝑙(𝑏) + 𝜂(𝑖, 𝑏)  

 

In above equation  𝑙𝑒𝑣𝑒𝑙(𝑏) is approach level and 𝜂(𝑖, 𝑏) is the branch distance. 

Discussed approaches did not consider executed branches, therefore Symbolic En-

hanced Fitness Function was proposed by harmen et al at 2011 [17]. They add a simple 

static analysis. i.e., symbolic executor to evolutionary algorithms for software testing. 

It calculates the cost of that a test case can satisfy all branch conditions with a normal-

ized branch distance. By mean that this approach attends all executed and non-executed 

branches. This approaches equation is calculating as follow equation: 

𝑓𝑆𝐸(𝑖) = ∑ 𝜂(𝑖, 𝑏)
𝑏𝜖𝑃

 

In [14] by portion of Symbolic Enhanced Fitness Function, proposed a factor for 

determining branches hardness level and calculate test cases finesses according to the 
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branches harnesses. formulated the hardness considering two main factors, first one is 

number of variables in the branch condition(α(c)) which extracted by Symbolic ana-

lyzer and second one is the branch conditions tightness(β(c)) Which is ratio of number 

of solutions in the problem’s domain to the size of domain. It also used a reinforcement 

coefficient to tunes effect of these two discussed factors in calculation of branches hard-

ness. their hardness factor is calculated as follow: 

 

DC(c)=𝐵2×α(c)+B×β(c)+1 

This hardness is as a punishment to test cases who cannot satisfy the branch. And its 

related fitness function calculation is as the following equation: 

 

𝑓𝐷𝐶(𝑖, 𝐶) = ∑ 𝐷𝐶(𝑐) ×

𝑐𝜖𝐶

 𝜂(𝑖, 𝑏) 

 

For example consider 𝑖1 = (10, −30,60), 𝑖2 = (30, −20, −20) as two test cases and 

figure 1 as our source code.  

 

 

 
Figure. 1  Example source code [14] 

 

There are three branches in this source code in lines: 2, 3 and 4. This program 

branches hardness’s has been calculated as: 

 

DC(“y==z”)=102 × 0.5 + 10 × 0.995 + 1 = 60.95 

DC(“y>0”)=102 × 1 + 10 × 0.5 + 1 = 106 

DC(“x=10”)=102 × 1 + 10 × 0.995 + 1 = 110.95 

 

Therefore 𝑖1 and 𝑖2 finesses would be: 

𝑓𝐷𝐶(𝑖1, 𝐶) = 60.95 ×
90

91
+ 106 ×

31

32
+ 110.95 ×

0

1
= 162.9677 

𝑓𝐷𝐶(𝑖2, 𝐶) = 60.95 ×
0

1
+ 106 ×

21

22
+ 110.95 ×

20

21
= 206.8485 

 

According to their fitness values 𝑖1 had been preferred than 𝑖2. 
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3 Related work 

In this section, we review the most important methods that centered around different 

meta-heuristic algorithms. 

In [14] benefited from both static and dynamic approaches advantages. it extracts 

some information from path conditions using static analyzing. the information had been 

used for defining more exact population instead of random initialization of the first 

population for GA. 

After 2014 most of researchers concentrate on guiding Genetic algorithm to faster 

converge which that leaded to decrease in calculation costs. Accordingly, to that de-

signing an appropriate fitness function considered by researchers. In [14] proved that 

branches have no equivalent values according to their hardness. It means that satisfying 

a harder branch is more valuable, therefore a test case who satisfies harder branches is 

more valuable. So they had been defining hardness factor to determining each branch 

harnesses, which has been used in fitness function equation [18].   

In [13] an approach to improve genetic algorithm efficiency proposed. They defined 

their exclusive branch distance and fitness function.  In addition [1] reinforced genetic 

algorithm by considering a preprocessing step before performing the algorithm. They 

extracted hard path conditions and used them to made a kind of adjustment for genetic 

algorithm which tunes individuals for faster converging. [19] combined static and dy-

namic approaches to generating test cases, they developed their static analyzer (JDBC) 

to extract path conditions, and used a search problem converter that converts extracted 

path conditions to optimization problems and finally they use genetic algorithm to solve 

these optimization problems. In [20] a branch hardness factor defined using probability 

of visits, hence branches with fewer Expected number of visits are harder than other. 

 

 

4 Proposed Approach  

This section depicts details of our proposed approach, to generate test cases for path 

coverage using augmented GA. By using the proposed silent function in [14], and 

changing in the main architecture of the genetic algorithm, a new approach is developed 

in the field of automatic test data generation. 

Generally speaking, evolutionary algorithms search for a general optimal point in 

the solution space, and usually cannot search locally around specific responses [22]. 

They could be trapped in an optimal point. In addition, sample space of software testing 

problem is very extensive. Therefore, this problem would be obvious. Have the feature 

of evolutionary algorithms (general search) is combined with a local search algorithm, 

the results will be improved. In other words, the evolutionary algorithm first finds good 

answers. Then, this area could be accurately searched by a local search algorithm to 

find the optimal point. Details of our approach is described below. 
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Genetic algorithm is a search heuristic that is inspired from Charles Darwin’s theory 

of natural evolution. This algorithm models the process of natural selection where the 

fittest individuals are selected for reproduction in order to produce offspring for the next 

generation. The process of natural selection starts with the selection of fittest individuals 

from a population. They generate individuals that almost keep the characteristics of their 

parents and will be added to the next generation. If parents are fitter, their offspring will 

be better than parents and have a better chance at surviving. This process keeps on iter-

ating and at the end, a generation with the fittest individuals will be found. Genetic al-

gorithm has a wide application in optimization problems [23]. 

 

Based on the figure 2. (a), the genetic algorithm architecture consists of six phases:  

1. Initial population to start the algorithm. 

2. Population Fitness functions evaluation and assign a fitness number to each indi-

vidual. 

3. Selection: select a pair of individuals as parent to make offspring. 

4. Crossover: is evolution operator which exchange parents’ bits with together to 

generates better individuals. 

5. Mutation: mutate some bits to avoiding trapping in local optimums. 

6. Replacement: replace new generated population with old one. 
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                                         (a)                                                          (b) 

Figure. 2 (a), (b) show the architecture of traditional GA and augmented GA, respectively 

 

In our proposed architecture showed in figure 2. (b), in addition to the above steps, 

a new step is added in which selection and mutation operators are re-evaluated and 

appropriate operators selected. The basis of this algorithm is inspired by the hill climb-

ing algorithm, therefore, it could be defined as a local search algorithm. 

Local search. the algorithm, among the neighbors of each individual, probs the fit-

test point. To calculate neighborhood of Individual k, D-dimensional space is consid-

ered. The neighbors of Individual k with position vector 𝐼𝑁𝐷𝑘 = (𝑥𝑘1 , 𝑥𝑘2, … , 𝑥𝑘𝑑) 
have a new position vector of  𝐼𝑁𝐷𝑘

́ = (𝑥𝑘1́ , 𝑥𝑘2́ , … , 𝑥𝑘𝑑́ ) where 𝑥𝑘1́ = 𝑥𝑘1 + 𝑝  , -500 

<p<+500  and 𝑥𝑘1́ ≠ 𝑥𝑘1 that p based on a gaussian distribution is selected.  
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The rule for local search or local transfer of Individual position can be represented 

as follows: Individual k transfers from 𝑥𝑘 to a new position 𝑥�́� if the fitness of 𝑥�́� is 

better than that of 𝑥𝑘 (i.e., fitness(𝑥�́�)>fitness(𝑥𝑘) ), and 𝑥�́� has the best fitness value 

among 𝑥�́�  neighbors. Otherwise, the Individual k must stay at its current position (i.e., 

𝑥𝑘). 

 

5 Experimental results 

 

We implemented [14] as a base and improve this approach. ran our proposed algorithm 

on 7 standard benchmarks which had used them. it is Noteworthy that we had 30 runs 

on each benchmark and all of presented data is averaged out 30 times of run. We com-

pared our approach with three others according to 2 factors, coverage percentage of 

targets in the benchmarks and average time cost of running of each benchmark which 

has been calculated using this formula: 

ATC = 
1

|𝑆|
∑ 𝑇𝐶𝑖𝑖𝜖𝑆  

Which in the above equation S is the set of successful runs of the algorithm. And TC 

is the time cost of each run individually. ATC determines the fair time cost for the 

algorithm. 

 
Table. 1  a comparison between this paper approach and others [20] 

Benchmarks Fitness function approaches 

 proposed approach Sakti [14] Symbolic EXE Approach level 

coverage ATC(s) coverage ATC(s) Coverage ATC(s) coverage ATC(s) 

Gammaq 100% 0 100% 0 66% 0.370 59% 0.309 

Expint 100% 2.133 75% 2.158 31% 2.180 1% 1.495 

Ei 100% 0.133 75% 0.597 77% 0.947 77% 0.685 

Bessj 100% 0.541 60% 2.103 31% 2.240 6% 1.059 

Bessi 100% 0.539 85.5% 2.001 51% 1.978 11% 1.406 

Plgndr 100% 0 - - 0% - 0% - 

Betai 100% 0 100% 1.259 70% 1.115 13% 0.938 

 

 

Our results clearly prove this approach’s superiority than former approaches.  

In the following diagram we can see the speed of convergence of proposed approach 

against other former approaches. Figure 3 shows the percentage of coverage in the num-

ber of generations produced in five different approaches. As we can see, number of 

generation that our proposed approach needed to completely cover all targets is far less 

than other approaches. While other approaches in the number of generations more than 

our attitude have reached 80% coverage, none of them have been able to fully cover 54 

goals. 
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Fig. 3 show coverage rate of different approaches vs our approach 

Tuning parameters of these papers are according to the following table: 

 

 
Table.2.  implementation details 

Bounds  [-1000,1000] 

Population 100 

Mutation rate 0.5 

Number of comparisons in lo-

cal search for each individual 

2 per each gene 

 

 

6 Conclusion and Future Work 

In this paper, we proposed a search-based test data generation approach to cover 

Paths coverage of the program under test. By using the proposed silent function in [14], 

as well as improving in the main architecture of the genetic algorithm. The experimental 

results of some programs under test demonstrated that augmented GA generated test 

data can cover all feasible paths having path conditions which cannot be covered by 
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test data generated from regular GA. The main reason for this superiority is due to the 

local search. 

Since these issues are inherently different from optimization issues, and in most 

cases the level of response space is discrete, the combination of search optimization 

algorithms such as linear programming with this algorithm can be very useful. There 

have been some studies performed in this area that, definitely, should be used as a func-

tion of this combination. (i.e., in the initialization step, some parts of the answer can be 

obtained with precise methods). 
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