A Markovian Decision Process Analysis of
Experienced Agents Joining Ad-Hoc Teams

1% Roghaiyeh Heidari
Institute for Advanced Studies
in Basic Sciences
Gava Zang, Zanjan, Iran
r.heidari @iasbs.ac.ir

Abstract—As the number of agents grows in a multi-agent
system, it is very impractical to have a team that is pre-
programmed to share a cooperation protocol. In this situation
experienced agents that have been trained to cooperate with
different teams come in handy. In this paper based on some UAV
teams, we investigate the behavior of an experienced agent which
we call ad-hoc agent. First, we train the ad-hoc agent to cooperate
with different teams and in different environmental situations.
This training is based on an approximated version of MDP which
is very fast. Then the ad-hoc agent joins the teams and tries to
cooperate with them in a Persistent Surveillance Mission(PSM).
Our experiment for the ad-hoc agent starts with joining different
fixed strategy teams and ends with joining to a fully cooperative
team. The results of the simulation show that the performance
of a team having an ad-hoc agent is even comparable to a team
that has completely trained together.

Index Terms—Ad-hoc Team, Multi-UAV Systems, Cooperation

I. INTRODUCTION

In a multi-agent system, as the number of agents grows, it
is expected that they will interact and cooperate with other
agents that are coming from different companies, leading to
the situation where these agents may not be pre-programmed
to share a common coordination protocol. This problem mo-
tivates the area of ad-hoc teamwork in which an agent may
potentially cooperate with a variety of teammates in order to
achieve a shared goal. the concept of the ad-hoc team is about
cooperation without pre-coordination [1]. Barrett et. al. have
launched the concept and created an evaluation framework for
ad-hoc teams in which the teammates must collaborate in the
pursuit domain [2].

Unlike cooperative team modeling in an ad-hoc team setting,
agents use the previous experiences to obtain the best action
in each situation [3]. The problem becomes more challenging
since agents can be heterogeneous and the control might not be
centralized. In [4] authors proposed the PLASTIC framework
which stands for Planning and Learning to Adapt Swiftly to
Teammates to Improve Cooperation. Using that method, an
ad-hoc agent uses past experiences to find out the best way
to cooperate with new teammates. Two approaches for using
past experience are proposed. The first one is estimating the
model of unknown teammates, and the other one is finding the
best-fitted policy of collaborating with them. Markov Decision

2" Mohsen Afsharchi
Department of Engineering
University of Zanjan
Zanjan, Iran
afsharchi @znu.ac.ir

374 Reza Khanmohammadi
Department of Electrical, Biomedical
and Mechatronics Engineering
Qazvin Branch, Islamic Azad University
Qazvin, Iran
reza926 @gmail.com

Process as a learning framework is used to model the problem
in these work [3]. We used the second approach to experiment
with a UAV ad-hoc teams, which is broadly used nowadays [5].
UAVs are playing important role in a vast range of applications
such as Search and Rescue, Area Surveillance and Urban
Management. For instance, DIJ Company has reported that
”At least 59 lives have been saved by civilian drones in 18
incidents” [13]. Generally, UAVs are fast and easy to use when
some missions are impossible for human to carry out, that is
why they have been studied a lot in this area.

The main contribution of this paper is that in the ad-hoc

team setting, we train an ad-hoc agent to cooperate with dif-
ferent teammates and in different environmental situations.We
use an approximate multi-agent learning method to train the
ad-hoc agent in a fast way. Then we assess the performance
of different teams when this ad-hoc agent faces unknown
teammates, and uses its previous experiences and learned
policies to choose the best one. This assessment is also done in
the different environmental situation which affects the agents’
policies.
The experimental setup is Persistent Surveillance Mission
(PSM) problem, which is introduced in [10]. In PSM problem,
a multi-UAV team is responsible for surveying an area with
minimum cost. The health and fuel level of UAVs is modeled
in state space of the Markov Decision Process. The problem
is solved using a modified version of the value-iteration
algorithm. In the learning step, the ad-hoc agent learns the best
action to collaborate with various teammates and in simulation
step, this agent chooses one of the previously learned actions in
cooperation with unknown teammates using a greedy method.
The control is decentralized, teammates are heterogeneous
and the observability of the environmental parameters are
approximated in the states of the MDP [6]. In the evaluation
step, the team performance is calculated with and without
an ad-hoc agent. The remainder of this article is organized
as follows. Section 2 provides some basic information about
the ad-hoc team. Section 3 introduces the PSM problem. A
detailed version of problem setting is described in Section
4. Section 5 describes the approximate MDP model of the
PSM and in Section 6 the experiments are presented. Section
7 contains the results and finally in Section 8 comes our
conclusion as well as the future work.

II. AD-HOC TEAM

The cooperative team is a well-studied concept in multi-
agent systems. When a task cannot be completed by an
agent, a cooperative group of agents will be formed to do
the task. Multi-agent teams are groups of agents dedicated
to a particular task in modern multi-agent environments. For
instance, a team of autonomous UAVs cooperates with each
other to do the surveillance task with minimum cost.

In some cases, agents get involved in a pre-coordination
process and learn how to cooperate with each other. In
some other cases, agents do the team work without any
pre-coordination. It is even possible that the teammates are
unknown to each other, and they may not have any knowledge
of the environment either. These teams are known as “ad-
hoc teams” [3]. An ad-hoc team is defined generally as the
following [1], [4]: “An ad-hoc team setting is one in which
teammates must work together to obtain a common goal, but
without any prior agreement regarding how to work together”.

The difference between a normal and an ad-hoc team is

shown in part (a) and (b) of Fig.(1) respectively. In an ad-
hoc team, there is no pre-coordination and the dynamic of the
environment is unknown to the agents. Acting optimally in an
ad-hoc team is a very complicated task.
In this article, similar to the work in [9], we want to train an
agent to do the best action facing unknown teammates. We
called this member, “ad-hoc agent” or “ad-hoc UAV” in our
context. The ad-hoc agent has to estimate teammate behavior
and select the best action accordingly. The other members
operate autonomously and the control is decentralized.

III. PSM PROBLEM

The objective of agents in a persistent surveillance mission
(PSM), is to continuously survey a pre-specified the region of
interest and to closely track any objects of interest discovered
there [6]. In the problem, the whole region is divided into three
distinct locations: surveillance area, communication relay, and
the base. Some targets are moving in the surveillance area and
the mission is to search for targets in the tasking area while
continuously tracking those that have already been detected.
There must be an agent in the communication area which is
responsible for connecting the base and the surveillance area.
In addition, each of the available agents in the mission may
have problems due to the sensor/actuator failure or the shortage
of fuel. In these cases, the agent in the communication relay
can act as an alternative to the agents in the surveillance area.
In addition, the agent whose sensor is damaged still can do the
communication task. Also, it is assumed that if the agent gets
to the base, it will be repaired and refueled. The absence of
UAV in the communication and surveillance area or the lack
of the required number of UAVs in the surveillance region
will impose some costs on the mission. The objective is to
minimize the cumulative cost of the mission. In Fig. (2), an
overview of the PSM problem is shown.

Joint
Action

State | Reward

Possible Teammates

Ad hoc Agent Combine

Possible Environments
State

7

s * \ \ g \‘ ~

A} X \ L Trimsvg,
r* \ \ v =
1 \ \ L N
! e 1 ! ! ‘« !
1 ' | 1 L4
. © P P

i ’

1 o s 5 x / 1 ’
[- P B/
Vg gl TS y ~ CR v ~ -

Fig. 2. Persistent Surveillance Mission;“S” is the Surveillance area, “CR” is
the Communication Relay and “B” is the base.

IV. PROBLEM DESCRIPTION

Assume that we have a UAV team doing PSM and we
want to add another ad-hoc UAV to the team without pre-
coordination. This is a full version of an ad-hoc team problem
and illustrates how an ad-hoc UAV tries to match itself with
unknown teammates and in an unknown environment. The
problem setting is shown in Fig. (3). The fully cooperative
behavior that an ad-hoc agent can do at each state while facing
with completely unknown teammates and environments is a
very challenging goal.

We assume that the ad-hoc UAV had previous experiences
with other teammates and different environments. But at the
simulation time, it doesn’t know which UAV is cooperating
with or how the environmental condition is now. The ad-hoc
agent has to choose one of the previously learned policies at
each simulation step.

We formulate the mission with 3 or 4 UAVs. Each UAV has 3
types of health status, "healthy”, ”sensor failure” and “actuator
failure”. In our setting, we have one healthy UAV that must be
in the communication relay and if this condition is disregarded,
the mission will fail due to the fact that UAVs will not be
able to transmit any information of surveillance area to the

Possible Teammates

o) X

Adﬁw] & %

State | Cost

Possible Environments

Fig. 3. An ad-hoc UAV agent in an unknown team and unknown environment.

base. In this circumstances, Fail_cost will be imposed on the
system. Also in the 4-UAV team, ngm,nq 1S 3 that means 3
healthy UAVs are needed to monitor the surveillance area. In
general, ngmnq refers to the number of healthy UAVs, which
are needed to monitor the surveillance area. On the 3-UAV
team, this number is equal to 2. If the number of healthy UAV's
in the surveillance area gets less than this value, Gap_cost will
be considered in the system.

Each UAV may face with sensor or actuator failure with
0.1 or .05 probabilities respectively. The fuel consumption
unit (i.e. traveling from one area to another) is 1 or 2 with
a probability of 0.5.

Because in the mission UAVs must avoid crashing, we set
the Crash_cost to a very high value which is 1000 times worse
than Gap_cost. This value is set to make sure that none of the
UAVs finishes their fuel in the middle of the mission. Failing
in the mission imposes a larger cost than the gap cost. When
a UAV team fails, it means that there is no way to send any
information from the surveillance area to the base. So, we
assume Fail_cost 20 times worse than the gap cost.

The goal is doing the surveillance job at minimum cost. The
cost function will be described in Section (V-D).

V. APPROXIMATED MDP MODEL

Based on the model presented in [6] we use an approxi-

mated state representative in our multi agent Markov Decision
Processes (MMDP) to coordinate our ad-hoc team work.
The decentralized approach helps the cooperating agents to
deal with uncertainties in fuel consumption and health-related
issues. In this article, we model the problem from the ad-hoc
UAV point of view.
A Markov Decision Process (MDP) includes the states set, the
actions set, a reward function and a transition function [12].
More formally, in an MDP, all the following parameters should
be identified.

o S:is a finite set of states

o A: is a finite set of actions

e T(s,a,s’): is the probability of transition from state s to

state s’ with action a

o C(s): immediate reward/cost receiving in the state s
The core problem of an MDP is to find a “policy” function
which specifies the best action that the agent will choose when

the agent is in the state s. Our modeling of PSM as an MDP
is as the following.

A. States

The states of the whole team are combination of the state
of the ad-hoc UAVs(S,) and the status of teammates(Sieqm)-
So, for the set of states we have:

S = Sa X Steam (1)

We show the state of a UAV in the PSM problem with 3
parameters: location, health, and fuel, which is represented as
a tuple < [, h, f >. Each of these parameters comes from the
following sets.

1 € L = {base, communication_relay, surveillance} (2)

h € H = {healthy, sensor_failure, actuator_failure}
3

feF={0,1,...,8} 4)

All the possible status for S, is represented in the Table
(D). The loc, health and fuel columns are the corresponding
numerical values for the location of the UAV and its health
and fuel. For instance [= 1 means base and h = 2 means
sensor failure. Since in the base, the fuel amount is 8 and the
agent is in a healthy condition, and the fuel consumption from
one region to another is at least one unit, there are overall 46
status.

TABLE I
ALL THE POSSIBLE STATUSES FOR ONE UAV
Status | loc | health | fuel | Status | loc | health | fuel
0 1 1 8 23 2 3 6
1 2 1 0 24 2 3 7
2 2 1 1 25 3 1 0
3 2 1 2 26 3 1 1
4 2 1 3 27 3 1 2
5 2 1 4 28 3 1 3
6 2 1 5 29 3 1 4
7 2 1 6 30 3 1 5
8 2 1 7 31 3 1 6
9 2 2 0 32 3 2 0
10 2 2 1 33 3 2 1
11 2 2 2 34 3 2 2
12 2 2 3 35 3 2 3
13 2 2 4 36 3 2 4
14 2 2 5 37 3 2 5
15 2 2 6 38 3 2 6
16 2 2 7 39 3 3 0
17 2 3 0 40 3 3 1
18 2 3 1 41 3 3 2
19 2 3 2 42 3 3 3
20 2 3 3 43 3 3 4
21 2 3 4 44 3 3 5
22 2 3 5 45 3 3 6

Having n UAVs the state space of the problem grows
exponentially to 46™. If we have enough time, the training
phase can run on exact (non-approximate) MDP or MMDP

model and find the best policy before starting off the mission.
Of course, when the team is large (i.e. more than 3 UAVs),
it is difficult to solve the exact MDP model which has more
than 4 million states which enforces us to use an approximated
model [6].

As it is stated earlier, the status of teammates is important
in PSM problem because every UAV has to know whether a
healthy UAV is in the communication relay or not and how
many healthy UAVs are in the surveillance area at the moment.
Incorporating this exact information makes the state space of
our ad-hoc agents very large. But all the information is needed
for the ad-hoc agent to choose the next action is just two
numbers. The first one is a flag (c), that shows the existence
of a healthy agent in the communication relay. If this number
is 1, it means at least one healthy UAV exists there and when
it is zero, it means that there is no agent in the communication
relay. The second number, n,, is the number of healthy UAVs
in the surveillance area. This parameter can be any integer
value between 0 and n — 1, where n is the number of UAVs in
the team. It means that the number of UAVs in the surveillance
area may be zero in the worst case. We use Sieam =< ¢, 15 >
to represent the status of the team. As a result, the status of
the whole team in our model can be represented as (5).

s=<ULlh,fc,ng > (®)]

For example, consider a PSM mission with 4 agents (i.e. n =
4). In this case, Sieqm for 3 teammates can be shown as the
following set (6).

Steam = {< 0,0 >,<0,1>,<0,2>,<0,3 >,

<1,0>,<1,1><1,2>} ©)

To illustrate more, when the state is < 3,1,4,1,2 >, the ad-
hoc UAV is in the surveillance area. It is healthy and has
4 units of fuel. One healthy UAV is in the communication
relay and 2 healthy UAVs are in the surveillance area at this
moment. Obviously, the state space is the Cartesian product
of S, and Sieqm. So, in this example with 4 UAVs, we have
467 = 322 states. As it is seen the number of the state space
has been significantly dropped compared to the exact model
(without approximation), which is 46* = 4477456.

B. Actions

The space of possible actions for each UAV is {1,0,—1}
where number 1 means "Move toward Surveillance”, number
0 means “’Stay”, and number —1 means "Move toward Base”.
So for the action set we have:

A={-1,0,1})

C. Transition Function

We divided the state space into 2 sets, .S, that shows the
ad-hoc agent and Sie.,,, Which is representing the teammates
approximated state. So, the description of the transition func-
tion is divided into 2 parts. The first part is about the transition
probability of the ad-hoc agent, which is represented by P,
and the second part is about the transition probability of
teammates, which is represented by Picqm,.

We calculate P, based on the probability of sensor failure (i.e.
PS) or actuator failure (i.e. PA) and the fuel consumption (i.e.
PF) which may be one or two gallons in each step. The next
“location” of the UAV is determined based on the selected
action. For example, having the following values.

PA=0.05PS=0.1,PF =05 (8)

then the probability of moving from state s, =< 2,1,7 >
to s, =< 3,3,6 > by moving forward equals to 0.025.
The second part of the transition function is calculated by
sampling. So, we simulated all the possible states for these
teammates and calculated the Pje.,, by using the rules that
had been coded. The probability of the transition function is
the multiplication of P, by Pieqpn as shown in (9).

T(S, a, 5/) = Pa X Pteam (9)

D. Cost Function

The cost function is a fundamental element of our problem
as it quantifies the quality of each state. As the control is
distributed, the ad-hoc UAV has to calculate the cost of each
state individually. The only known parameters from teammates
situations is Sieqm =< ¢, ng >.

The costs in PSM problem are categorized into 3 different
types [6]. For the UAV that finishes its fuel in the middle
of its mission, we consider the crash cost (i.e. Crash_cost),
in case there is no UAV in the communication relay or in
the surveillance area, we consider the fail cost (i.e. Fail_cost),
and for the case that the number of the required UAVs in the
surveillance area is less than the expected limit, we consider
the gap cost (i.e. Gap_cost) according to the shortage of the
number of the required UAVs.

For example, for a mission with 3 UAVs, one UAV is consid-
ered performing the communication task and two UAVs are
considered performing the surveillance mission. When there is
no UAV in the communication relay or the surveillance areas,
the fail cost is imposed to the whole set. In case there is one
UAV in the communication relay and there is one UAV in the
surveillance area, the gap cost will be applied. Accordingly,
the cost of each state can be calculated. For instance, for state
<1,1,8,0,1 > we impose Fail_cost because no healthy agent
is in communication relay to do the communication task.
The Algorithm (1) demonstrates the way we impose the cost
on each state. Here nge, and neom,m are local variables to
show the number of healthy UAVs in the surveillance and
communication relay area respectively and ng,,,q is a fixed
value in the problem to specify the number of needed healthy
UAVs in the surveillance area.

By specifying all the parameters of the MMDP we can solve
the problem. When the MMDP is solved, we will achieve one
policy 7 : S — A, which specifies what action must be done
in each state. We use value-iteration to find the best policy for
each state in our experiments.

VI. EXPERIMENTS

The main focus of our experiments is on the training of an
ad-hoc UAV before starting the mission and allowing this agent

Algorithm 1 CalculateCost
1: function CalculateCost(s < I, h, f,c,ngs >) returns cost

a real value

local variables: 1) Tcomm

Nsery < Mg

Neomm — C

cost <+ 0

if (=3,h=1,f>0) then
Ngery = Ng + 1

elseif ({ =2,h <3, f > 0) then
Neomm = 1

10: else if (f = 0) then

11: cost <+ Crash_cost

12: end if

13: if (Ngery = 0 OF Neomm = 0) then

R A A S

14: cost < Fail_cost + cost

15: else if (Ngmnd > Nserv AN Neoman = 1 and ngepry > 0)
then

16: cost (ndmnd — Ngery) X Gap_cost + cost

17: end if

18: return cost

19: end function

to join a team with different settings. The ad-hoc settings are
categorized into two parts. Unknown teammates and unknown
environments. In the first section of our experiments, we show
how an ad-hoc UAV cooperates with unknown teammates. In
the second part, the behaviour of an ad-hoc UAV is evaluated
in some unknown environments.

A. Unknown Teammates

Three types of fixed strategy UAVs are created and we
calculated and saved the transition function of these teams
as 3 separate matrices (i.e. Picqm) (See Section VI-B). The
ad-hoc UAV learned the best policy in each team by solving
the approximated MDP using the value-iteration algorithm. So,
this agent has 3 policies and is enabled to choose one of them
at each simulation step. The brief abstraction of our scenario
is illustrated in Fig. (4).

The black UAV is the ad-hoc one and the others are fixed
strategy UAVs. First, the ad-hoc UAV learns how to cooperate
with three different teammates. The output of the training
phase, which is shown in the top of Fig. (4), is 3 policy
functions. These functions have the best policy for each state.
Then, at each time step, the ad-hoc UAV decides to choose
one of the previously learned policies.

The online decision algorithm which we call “Policy-
Selection” is shown in Algorithm (2) which is a
greedy algorithm. The ad-hoc UAV will choose the
policy that minimizes the immediate cost. It uses the
CalculatePolicyCost function at line 5. This function
aggregates the cost of each state ”state” which is reachable

33, 9%

from the current state ”s” by following the policy “p”.
The reachable states are the output of the function
”Create_Next”. Accordingly, each state is reachable
by a probability which is calculated in T'rans function. Then,
the probability of the transition to state ”state” is multiplied
by the cost of the state state. Finally, all these values are
summed up for each policy in variable total_cost. This value
is returned to “tempCost”.

Algorithm 2 Policy-Selection
1: function Policy-Selection(s: is a state, Policy is an array

of 3 learned policies) returns policy

2: minCost <+ MAX VALUFE

3: tempCost < 0

4: for each p in Policy do

5. tempCost = CalculatePolicyCost(s,p)
6: if minCost > tempCost then

7: minCost < tempCost

8: policy < p

9: end if

10: end for

—_

: return policy

Algorithm 3 CalculatePolicyCost

1: function CalculatePolicyCost(s,policy) returns
total_cost

2: total_cost < 0

3: next_states < Create_Next(s, policy)

4: for each state in next_states do

5: total_cost = Trans(s,policy, state) X

CalculateCost(state) + total_cost
6: end for

7. return total_cost

Now we describe the team formation method.

B. The Teams Formation

To compare the efficiency of an ad-hoc agent in a team we
created 6 different teams. The first 3 teams are not intelligent
and use a fixed strategy.

« Random; Each UAV chooses the next action randomly.

o Risky; A “Risky” UAV in the team chooses the “move
toward base” action in 8% of times, stay” action in 25%
of times and “moving toward surveillance” in 67% of
times.

o Conservative; A ”Conservative” UAV chooses the “move
toward base” action in 50% times, “stay” action in 33% of
times and “moving toward surveillance” in 7% of times.

In these teams, all the UAVs behavior is the same. Some
conditions are hard coded into UAVs to avoid the crash during

the mission. For instance, the UAV which has just less than 3
units of fuel, and is located in the communication relay forced
to move toward the base because it has to avoid crashing. To
make it clear we need these teams just for comparison and no
ad-hoc agent will get involved in them as you will see in the
next subsection.

We also have three intelligent teams in which they include at
least one experienced ad-hoc agent.

o PoliSell; This team has just one intelligent ad-hoc UAV
with learned policies before starting the mission. The
other teammates are from Random, Risky or Conservative
teams.

o PoliSel2; This team is trained to work cooperatively and
one ad-hoc UAV which is trained independently will join
them.

« MMDP; This is a fully cooperative intelligent team in
which agents learned to cooperate with each other in the
mission.

As it is seen we have two “PoliSel” teams. On the first team,
PoliSell, the other teammates have variant behaviors selected
from previously mentioned teams. In other words, at each
simulation step, 3 other UAVs choose one of the 3 behaviors to
follow. On the second team, PoliSel2, the other teammates are
trained and know the best action in each state where agents
trained to cooperate with other agents. In these two teams,
the ad-hoc agent has to adapt itself in each step. The UAV
chooses one action which minimizes the cost at the moment
Using Algorithm (2). The name “PoliSel” is used for these
teams because of the “Policy-Selection” algorithm is used at
each simulation step.

The last team, which is known as “MMDP”, is a fully
intelligent team. It stands for Multi-Agent “MDP” which is
used in [6]. It means that all the UAVs learned the best
policy to cooperate with each other. We need this team to
show the difference between the team with just one intelligent
ad-hoc agent with the case when all teammates are treating
intelligently and doing the best action.

This team is the main goal in all multi-agent systems. The
MMDP model guarantees the full cooperative behavior which
leads to the minimum cost or the best reward for the team.

C. Unknown Environments

For unknown environments, the teammates policy in each
team is fixed. Assume that we want to improve one team’s
performance by just adding some more experience to one
agent. The training phase of this experiment is very fast and
took less than a second. Three different weather conditions are
simulated by manipulating PS, PA and Fail_cost. Then the ad-
hoc agent is trained to do the best action in different weather
conditions. The environment parameters are shown in Table
).

PoliSell is formed by random UAVs with one ad-hoc
UAV. The ad-hoc UAV is trained to act in three different
environments (see Table (II)). The UAV keeps the best actions
for each state in 3 different arrays called Policyl, Policy2,
Policy3 respectively. The ad-hoc agent decides online and

Risky Team
State x
Action
ot | A
k <«

Learning Policy1

Training

% Random
:N Conservative
% Risky
x Ad-hoc

Simulation

Fig. 4. The schema of the experiment. The top of the image shows the training
step; the bottom illustrates the simulation time with policy selection.

TABLE II
PARAMETERS TO MAKE DIFFERENT ENVIRONMENTS
Environment Name | PA PS | Fail Cost
Environmetl 0.1 0.1 20
Environmet2 0.25 04 15
Environmet3 0.05 | 0.05 10

select the policy that should follow. The algorithm for training
and policy selection are the same as Unknown Teammates
which is presented in section (VI-A). The other teams are
formed like the previous experiment. So, PoliSel2 includes
one ad-hoc UAV and the other agents are trained as a team.
In the same way, MMDP is a fully cooperative team in which
all the agents are trained together.

The performances of teams are compared to a fully random
UAV team and a fully cooperative UAV team which is trained
under the following parameters.

PS =0.1,PA = 0.05, Fail_Cost = 20 (10)

D. Evaluation

We conduct an experiment to evaluate the performance of
UAV teams in the PSM problem based on the cost function
which is defined earlier. We calculate the cumulative cost of
the mission in 1000 steps of the simulation and the goal of
our experiments is to minimize this value. As we said before,
the UAVs are avoiding the crash while doing their mission.
So, we just use two costs for the measure: Fail_cost and
Gap_cost. We count the number of gaps and fails occurred
during the mission. To make a unified cost function, we use
(11) to combine fail and gap cost where the coefficient u is
the balancing factor. Using this equation, we have exactly
one value to compare teams.

Ev(team) = p X count(fail) + count(gap) (11)

We compare two groups of teams which are described previ-
ously where our focus is on the performance of “PoliSell” and
“PoliSel2”. We set p to 20 in our evaluations which means
the fail event imposes 20 times worse cost than the gap.

E. Implementation

Our learning program is coded in the Visual Studio 2015

environment in C++ with a system with Intel Core 15-3320
Processor and 8GB RAM .
Learning ad-hoc UAV is equal to solving the approximate
MDP which is described in Section (V). The learning process
is very fast and it takes less than one second. Training the
MMDP team by solving the exact MDP for just 4 UAVs with
value-iteration in the PSM mission takes about 3 weeks [6].
Using an optimized version of value iteration, we decreased
this time to 2 hours for 40 iterations. This optimized version
is shown in Algorithm (4). Considering the fact that the
reachable states from the current state by doing an action is
limited in the PSM problem, the value-iteration algorithm’s
runtime can be optimized. As it is shown in Algorithm (4),
line 8 is responsible for finding an action which minimizes
the cost. Here the second part of the summation (i.e. (1)) can
be solved in a linear time because of the sparseness of the
reachable states in the PSM problem.

Algorithm 4 PSM-VALUE-ITERATION
1: function PSM-Value-Iteration(T'rans, Cost) returns a

Policy

2: inputs: T'rans, a transition model
Cost, a cost function on states

3: local variables: Value, value function, initially identical
to Cost

4: Valuep, temprory value function, initially identical to
Cost

5: repeat
6: Value < Valuep
7. for each state 7 do
8 Valuepli] < min, Z Transj; x Valueli] +Cost|i]
J
1
9: 7[i] = a , a is the action which minimize Valuel[i]

10 end for

11: until Close-Enough(V alue,V aluep)
12: return w

13: end function

VII. RESULTS

In the following we bring the results of our experiments
and compare the performance of different teams in different
environmental situations.

A. Unknown Teammates

Table (IIT) and Table (IV) show the fail and gap costs and
the corresponding Ev for 3 and 4 UAVs respectively. Overall,
what stands out from the results is that more intelligence in
teammates leads to less fail event count in the mission and that
is because trained UAVs are aware of effect of fail against the

gap. Another interesting point is that the MMDP is the best
team (as it is expected) and PoliSell is remarkably worse than
MMDP but, the performance of the PoliSel2 and MMDP teams
are very close. This shows that in PoliSel2 the ad-hoc agent
can adapt itself to the team. On the other hand, in PoliSell
just one ad-hoc UAV is the intelligent member and the other
teammates are fixed strategy agents.

Looking at the details, it is obvious that the performance of
Conservative team is about 3 times worse than MMDP. It
is significant that just one ad-hoc UAV made non-intelligent
teams better. For instance, PoliSell had 50% less fail count
than the Conservative team, 45% less than the Random team
and approximately 24% less than the Risky team in the team
of 4 UAVs.

To sum up, by looking at Fig. (5), you can see the evaluation
function for PoliSell is clearly better than non-intelligent
teams. It means that by spending a little time for training just
one agent in an ad-hoc team setting, the performance gets at
least 17% better in the team of 4 UAVs and 11% better in the
team of 3 UAVs. There is less than 10% difference between
Ev in MMDP comparing with PoliSel2 teams.

TABLE III
THE RESULTS OF EXPERIMENT FOR 3 UAVS
Team Name | count(gap) | count(fail) | Ev(Team)
Conservative 102 893 17962
Random 110 880 17710
Risky 200 757 15340
PoliSell 296 667 13636
PoliSel2 606 346 7526
MMDP 693 306 6813
TABLE IV
THE RESULTS OF EXPERIMENT FOR 4 UAVS
Team Name | count(gap) | count(fail) | Ev(Team)
Conservative 299 842 17139
Random 356 812 16596
Risky 513 695 14413
PoliSell 756 560 11956
PoliSel2 1374 218 5734
MMDP 1432 200 5432

B. Unknown Environments

The performance of teams is depicted in Table (V) for a
team of 3 UAVs and in Table (VI) for a team of 4 UAVs.
In general, 4 teams are compared and as it is expected the
instability of the weather condition makes team performance
worse than what’s presented in Section (VII-A). Obviously,
the more intelligence in teams, the better performance we get.
In contrast with Section (VII-A), the significant point here is
better performance of PoliSel2 compared to MMDP. That is
because PoliSel2 has one UAV which is familiar with 3 types
of environments and can adapt the policy based on variant
weather conditions.

In detail, when other teammates are intelligent, having an
ad-hoc experienced agent makes the team performance better

2 p
3
¥ nion UMMM e

0 2000 4000 6OOO 8000 10000 12000 14000 16000 18000

% n=4 W n=3
Cost Evaluation

Fig. 5. The evaluation function comparison of different teams of 3 and 4
UAVs in the unknown teammates experiment.

even if the experience gained from an approximate method.
Remember that training an ad-hoc UAV is very fast [6]. Even
though the training time for the whole MMDP team is longer
than PoliSel2, evaluation function output for PoliSel2 and
MMDP are very close. The interesting point is that PoliSel2
is marginally better.

Some other concrete evidence in the results shows that
PoliSell with just one approximately trained UAV makes the
team better, at least 10% than a Random team in 3 UAVs team
and 17% better in 4 UAVs team.

TABLE V
THE RESULTS OF EXPERIMENT FOR 3 UAVS
Team Name | count(gap) | count(fail) | Ev(Team)
Random 117 878 17677
PoliSell 204 787 15944
PoliSel2 421 547 11361
MMDP 450 549 11430
TABLE VI
THE RESULTS OF EXPERIMENT FOR 4 UAVS
Team Name | count(gap) | count(fail) | Ev(Team)
Random 252 865 17552
PoliSell 572 696 14492
PoliSel2 988 445 9888
MMDP 911 455 10011

VIII. FUTURE WORK AND CONCLUSION

In this paper, we utilized a fast and approximate way of
training ad-hoc agent in the PSM problem to investigate the
behavior of an experienced agent in different teams. We used
our policy selection algorithm to select the best policy to
cooperate with unknown teammates or environments based on
the experiences of the ad-hoc agent. The cost is reduced signif-
icantly when the ad-hoc agent joins the team of fixed startegy.
The results revealed that not only the team performance is
much better than fixed strategy teams but also comparable to

the fully cooperative teams. We will do some investigation on
the online learning in future work. Also, the learning was only
for a team with 3 and 4 agents and we would like to see the
performance of our idea in larger teams.

REFERENCES

[1] Stone, Peter, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosen-
schein. ”Ad Hoc Autonomous Agent Teams: Collaboration without Pre-
Coordination.” In AAAIL 2010.

[2] Barrett, Samuel, Peter Stone, and Sarit Kraus. "Empirical evaluation
of ad hoc teamwork in the pursuit domain.” In The 10th International
Conference on Autonomous Agents and Multiagent Systems-Volume
2, pp. 567-574. International Foundation for Autonomous Agents and
Multiagent Systems, 2011.

[3] Barrett, Samuel, Avi Rosenfeld, Sarit Kraus, and Peter Stone. "Making
friends on the fly: Cooperating with new teammates.” Artificial Intelli-
gence 242 (2017): 132-171.

[4] Barrett, Samuel, and Peter Stone. "Cooperating with Unknown Team-
mates in Complex Domains: A Robot Soccer Case Study of Ad Hoc
Teamwork.” In AAAIL pp. 2010-2016. 2015.

[5] Meng, Wei, Zhirong He, Rong Su, Pradeep K. Yadav, Rodney Teo,
and Lihua Xie. "Decentralized multi-UAV flight autonomy for moving
convoys search and track.” IEEE Transactions on Control Systems
Technology 25, no. 4 (2017): 1480-1487.

[6] Redding, Joshua David. ”Approximate multi-agent planning in dynamic
and uncertain environments.” PhD diss., Massachusetts Institute of
Technology, 2011.

[7]1 Chakraborty, Doran, and Peter Stone. “Cooperating with a markovian
ad hoc teammate.” In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, pp. 1085-1092. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2013.

[8] Hausknecht, Matthew, Prannoy Mupparaju, Sandeep Subramanian, Shiv-
aram Kalyanakrishnan, and Peter Stone. “Half field offense: An envi-
ronment for multiagent learning and ad hoc teamwork.” In AAMAS
Adaptive Learning Agents (ALA) workhop. 2016.

[91 Genter, Katie, Tim Laue, and Peter Stone. “Three years of the RoboCup

standard platform league drop-in player competition.” Autonomous

Agents and Multi-Agent Systems 31, no. 4 (2017): 790-820.

Bethke, Brett, Jonathan How, and John Vian. "Multi-UAV Persistent

Surveillance with Communication Constraints and Health Mangement.”

In AIAA Guidance, Navigation, and Control Conference, p. 5654. 2009.

Nisan, Noam, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani,

eds. Algorithmic game theory. Cambridge university press, 2007.

Vidal, J. M. “Fundamentals of multiagent systems with Net-Logo

Examples: March 2009.” (2010)..

ODiriscoll, Dylan. "UAVs in Humanitarian Relief and Wider Develop-

ment Contexts.” (2017).

[10]

(11]
[12]

[13]

