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a b s t r a c t

Smart grids, to facilitate the electricity production, distribution, and consumption, employ information and
communication technologies simultaneously. Electricity markets, through stabilizing the electricity prices,
attempt to alleviate the challenges of power exchange. On one hand, buyers, by considering their full demand
satisfaction, endeavor to purchase the electricity cost-effectively. On the other hand, sellers, by taking their
limited electricity generation capacity into account, are interested in increasing their financial benefits. To
address this challenge, this paper introduces a highly-functional semi-decentralized power matching framework
based on multi-objective optimization techniques executing in a day-ahead electricity market. A two-stage price
updating mechanism to continuously balance the electricity prices is also provided. At each time interval, buyers
and sellers submit their individual electricity price offers to the market operator. The market operator tunes them
and then, announces the electricity market price. A robust multi-objective power matching algorithm is developed
to make the matching contracts considering buyers’ and sellers’ objectives along with grid stability constraints
imposed by distribution system operators. It also considers the minimization of electricity distribution loss in the
matching procedure. Simulation results indicate that the framework successfully reaches a reasonable balance
of aforementioned conflicting objectives while conducing negotiating electricity price offers to an equilibrium.
It is shown that the proposed algorithm behaves better compared to well-known multi-objective evolutionary
algorithms in terms of both optimizing the social welfare and computational complexity (scalability). Finally,
effects of the two-stage price updating mechanism on the stability of the proposed evolutionary algorithm is
discussed. Performance comparisons show that the proposed framework outperforms the similar approaches
available in the literature.

1. Introduction

The current structure of the electrical grid is inefficient in re-
sponding to the growing demand for electricity. The smart grid, by, for
instance, demand response programs and distributed power matching,
aims at revolutionizing the current electrical grid to reveal its concerns.
Nevertheless, a solid introduction of the smart grid confronts numerous
challenges in designing, controlling, and implementation. The smart
grid employs bilateral electricity and information streams to establish
a reliable energy management infrastructure (Farhangi, 2010). This is
done by dividing it into: 1) smart infrastructure system for electric
power transmission, 2) smart management system for controlling and
managing grid services, and 3) smart protection system for protecting
the smart grid (Fang et al., 2012). To integrate these systems while

* Corresponding author.
E-mail address: armin.ghasemazar@gmail.com (A.G. Azar).

identifying main stakeholders and feasible communication paths in the
smart grid, National Institute of Standards and Technology (NIST) has
developed an inter-operable smart grid conceptual model (National
Institute of Standards and Technology, 2014).

This paper concentrates on the interconnectivity of customers
and markets domains in the smart grid. The first domain supports
three customer types named industrial, commercial, and residen-
tial. For the sake of simplicity, this paper considers residential cus-
tomers, in which they are characterized by buyer and seller agents.
Each agent is an individual entity providing the markets domain
with its preferences, requirements, and constraints. Hereinafter, cus-
tomer and agent are interchangeably used as contextual synonyms.
Markets domain, particularly electricity markets, intends to effec-
tively manage the customers’ information (Bichler et al., 2010).
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Nomenclature

Constants

P Pareto-front
𝛿𝑠𝑗,𝑔 Malleability rate of seller 𝑠𝑗,𝑔
𝛾𝑏𝑖,𝑘 Malleability rate of buyer 𝑏𝑖,𝑘
𝐿𝑏𝑖,𝑘 Location of buyer 𝑏𝑖,𝑘
𝐿𝑠𝑗,𝑔 Location of seller 𝑠𝑗,𝑔
𝐿𝜉 Location of the power plant 𝜉
𝑝𝑙 Minimum offerable electricity price ($/kWh)
𝑝𝑢 Maximum offerable electricity price ($/kWh)
𝑙𝑜𝑠𝑠𝑏𝑖,𝑘𝜉 Electricity distribution loss between buyer 𝑏𝑖,𝑘 and the

power plant 𝜉
𝑙𝑜𝑠𝑠𝑏𝑖,𝑘𝑠𝑗,𝑔 Electricity distribution loss between buyer 𝑏𝑖,𝑘 and

seller 𝑠𝑗,𝑔
SEFP Solution efficiency factor of solutions on Pareto-

front P
𝜑𝑎 Feasible power matching solution 𝑎
𝜉 Power plant
𝑏𝑖,𝑘 Buyer 𝑖 connected to feeder 𝑘
𝐸 Euclidean distance parameter
𝑓𝑘 Feeder 𝑘
𝐾 Number of feeders
𝑀𝑔 Number of sellers connected to feeder 𝑓𝑔
𝑁𝑘 Number of buyers connected to feeder 𝑓𝑘
𝑝𝜉 Fixed electricity price offered by the power plant 𝜉

($/kWh)
𝑝𝑐 Crossover probability
𝑝𝑚 Mutation probability
𝑄 Population size of the evolutionary algorithm
𝑠𝑗,𝑔 Seller 𝑗 connected to feeder 𝑔
𝑇 Number of time intervals
𝑊 Number of generations of the evolutionary algorithm
𝐸𝐿𝐹 𝑓 Electricity loss factor in the Customer–Customer trad-

ing method
𝐸𝐿𝐹 𝜉 Electricity loss factor in the Customer-to-PowerPlant

trading method

Indices

𝑎 Index of power matching solutions
𝑖 Index of buyers
𝑗 Index of sellers
𝑘, 𝑔 Index of feeders
𝑡 Index of time intervals

Sets

B Collection of sets of buyers
Q Parent population in the evolutionary algorithm
S Collection of sets of sellers
𝐷𝑏𝑖,𝑘 Load demand set of buyer 𝑏𝑖,𝑘
𝑓𝑆𝑔 Set of sellers connected to feeder 𝑓𝑔
𝑓𝐵𝑘 Set of buyers connected to feeder 𝑓𝑘
𝑄𝑠𝑗,𝑔 Surplus energy set of seller 𝑠𝑗,𝑔
𝐹 Set of all feeders

Variables

C𝑡𝜑𝑎 Matrix of contracts of solution 𝜑𝑎 at time interval 𝑡
𝑑𝑡𝑏𝑖,𝑘 Load demand of buyer 𝑏𝑖,𝑘 at time interval 𝑡 (kWh)
𝑞𝑡𝑠𝑗,𝑔 Surplus energy of seller 𝑠𝑗,𝑔 at time interval 𝑡

𝑝𝑏
𝑡

Weighted average of electricity prices offered by all
buyers at time interval 𝑡

𝑝𝑠𝑡 Weighted average of electricity prices offered by all
sellers at time interval 𝑡

𝑝𝑏𝑡𝑖,𝑘 Electricity price offered by buyer 𝑏𝑖,𝑘 at time interval 𝑡
𝑝𝑑𝑡 Electricity market price at time interval 𝑡
𝑝𝑠𝑡𝑗,𝑔 Electricity price offered by seller 𝑠𝑗,𝑔 at time interval 𝑡
𝑥𝑡𝑏𝑖,𝑘𝜉 Total electric energy units transferred from the power

plant 𝜉 to buyer 𝑏𝑖,𝑘 at time interval 𝑡
𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 Total electric energy units transferred from seller 𝑠𝑗,𝑔

to buyer 𝑏𝑖,𝑘 at time interval 𝑡
𝐸𝐷𝑇 𝑡𝑘 Electricity demand threshold imposed by feeder 𝑓𝑘 at

time interval 𝑡 (kWh)
𝑃𝐴𝐶 𝑡𝑘 Peak aggregate consumption of customers at time

interval 𝑡 (kWh)

This is done by the market operator, who typically applies the pricing
scheme and demand and supply balancing strategies to the electrical grid.
Thus, having a reliable interface between these two domains is criti-
cal since it directly affects ‘‘matching production with consumption.’’
Recent developments in electricity markets require the employment
of a reliable power matching framework. In this regard, the market
operator, to clearly specify the power exchange contracts over time, is
responsible for matching buyer agents with seller agents. Nevertheless,
far too little attention has been paid to build an effective framework
considering the conflicting objectives and constraints that the customers
and Distribution System Operators (DSOs) include.

This paper puts efforts into proposing a novel semi-decentralized
power matching framework to the smart grid. Fig. 1 pictures the
conceptual view of this framework. According to the current structure
of the grid, the electricity is distributed to customers in a hierarchical
manner. Since controlling all customers by a single system is not
practically scalable, we propose to semi-decentralize such controlling
system into a number of sub-systems. We consider feeders as the last
points of delivering the electricity to households. Each feeder serves a
non-overlapping set of customers. This will help the framework host a
large number of customers in the grid. The framework runs the matching
procedure in each feeder. In each feeder, on one hand, buyer agents
have to satisfy their demands over time. They intend to minimize their
power purchase cost considering their full demand satisfaction at each
interval. On the other hand, seller agents are interested in maximizing
their selling benefit considering their limited surplus electrical power
production. It is becoming increasingly difficult to ignore the impact of
grid stability constraints on market-driven power matching frameworks.
We use the concept of ‘‘electricity demand thresholds’’ to respect
the grid’s capacity (Azar et al., 2015). The framework is physically
distinguishable and completely compatible with the existing electrical
grid. This also ties in well with future smart grids that are based on
Distributed Energy Resources (DERs) and flexibly interconnected energy
supply grids (Jacobsen et al., 2015).

Owing to the conflictive nature of discussed objectives, this paper
frames the power matching problem as a multi-objective optimization
framework. Multi-objective optimization is an area of multiple criteria
decision-making structure, which has extensively been used in smart
grids particularly in the electricity consumption scheduling (Lu et al.,
2015) and demand side management (Ramachandran and Ramanathan,
2015). We activate such framework by proposing a multi-objective
power matching algorithm to match the total demand with the total
surplus production. This algorithm is a revised version of well-known
Non-Dominated Sorting Genetic Algorithm-II (NSGA-II). It consecu-
tively provides the market operator with admissible power matching
solutions. Performing this algorithm helps balance the grid operations
and equilibrate the electricity market better. To reach this point, the
market operator has to conduct power exchange contracts with quite
reasonable electricity prices. The algorithm, to enable customers to
update their electricity price offers periodically, also employs a two-
stage price updating mechanism. At each time interval, in the first
stage, buyers/sellers provide the market operator with their updated
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Fig. 1. Conceptual view of the power matching framework.

electricity price offers to based on their total demand/production and
previous price offers. In the second stage, the market operator tunes
these price offers and then, announces the electricity market price to
make the contracts. This mechanism encourages customers to balance
their electricity price offers to rapidly reach their purposes. Note that
each offer refers to the price that customers aim at basing each electric
energy unit on it.

The remainder of this paper is organized as follows: Section 2
overviews the related work. Section 3 describes the multi-objective
power matching framework. Section 4 clarifies the power matching
algorithm. Section 5 demonstrates the simulation setup and analyses.
Finally, Section 6 concludes the paper.

2. Related work

In recent years, there has been an increasing interest in investigating
the challenges of interactions among customers and electricity markets
(Kirschen, 2003; Ventosa et al., 2005). Kirschen (2003) argued that the
electricity market’s development was undeniably based on the quanti-
tative commodity because of its easily-measurable nature. He claimed
that to orchestrate a competitive electricity market, it might be useful
to propose some decision support frameworks. Ventosa et al. (2005)
investigated such frameworks and discussed that these frameworks
should possess three crucial features: 1) optimization to apply to a set
of objectives and constraints, 2) equilibrium to provide customers and
markets with, and 3) simulation to coordinate complex mathematical
methods of first two features.

Evolutionary multi-objective optimization techniques have recently
gained popularity and have been successfully applied to several research
areas in the smart grid. For instance, Azar and Jacobsen (2016) proposed
a multi-objective load scheduling framework concentrating on reducing
the total electricity bills and CO2 emissions as well as flattening the
aggregated peak demand at the same time. Chai et al. (2016) developed
a similar framework, which utilized an iterative learning method to keep
a proper trade-off between the consumption expense and the satisfaction
index. The framework was modeled by a hybrid mixed-integer multi-
objective quadratic optimization technique. Furthermore, Jornada and
Leon (2016) dealt with the electricity generation capacity expansion
problem to minimize cost and water withdrawal. They introduced a
robust methodology to aid the multi-objective decision making process.

To the best of our knowledge, this work is among the first attempts
that investigates the usability and applicability of the multi-objective
optimization techniques in the power matching problem with a focus on
encouraging customers to participate in a hourly-basis market to match
demand with supply. This paper follows the critical features discussed
above by ‘‘outlining a reliable and novel multi-objective power matching
framework attempting to match demands with supplies (optimization)
under a competitive power exchange contract (equilibrium) proposed by
an effective negotiation procedure (simulation).’’ It advances the state
of the art in considering electricity prices as an incentive function of
negotiations and contracts in the power matching framework.

In the markets, market clearing is a process to match demand with
supply. The new classical economics assume that, in any given market,

prices are always adjusted up or down to ensure market clearing.
Ashkaboosi et al. (2016), to address the market clearing problem, pro-
posed a bi-level optimization technique, where the upper-level was the
profit of the investment in wind power and the lower-level was market
clearing. Dourbois and Biskas (2016) addressed the similar problem
from the transmission security’s point of view. They formulated the
market clearing problem as a mixed integer linear programming model
in an European-type day-ahead market with multi-period products. The
discussed papers fail to consider grid stability constraints. Sardou and
Ameli (2016) determined this gap and framed the problem as a multi-
objective mathematical programming model considering social welfare
maximization and minimization of lines overload and voltage deviation
as well as loadability limit maximization simultaneously. To do so, they
developed a revised version of NSGA-II basing on fuzzy models. Müller
et al. (2016) considered the concept of ‘‘future contract combinations’’
using game theory approaches, which included pairs of buy/sell-orders
for swapping two items in equal quantity, for instance electricity. They
presented a minimum cost flow formulation of the futures opening
auction problem that guaranteed consistent prices in the market clearing
problem.

Advancing power matching frameworks with respect to their po-
tentiality has gained popularity in the recent years (Chen et al., 2010;
Nygard et al., 2011; HomChaudhuri and Kumar, 2011; HomChaudhuri
et al., 2011, 2012). Chen et al. (2010) proposed two market models, in
which the former was trying to match the demand with production while
the latter was aiming to schedule the demand by encouraging customers
to shift or curtail their load consumption. Although the models were
successful in competitively equilibrating the market, however, they
were forcing customers to adapt their consumption behavior with the
electricity market prices, which caused them not to get the expected
benefit from their power matching contracts. Both models disregarded
any grid stability constraint, which might have jeopardized the electrical
grid in some unforeseen circumstances. Nygard et al. (2011) discovered
a model proposing an optimal cooperation of customers together to
minimize their electricity cost subject to the power flow balance and
capacity restriction. Not only was the model required the total demand
be equal to total supply, but also, the authors did not prove how and
by which approach they solved the model since the discussing problem
was NP-complete.

Market clearing, particularly in such matching frameworks, brings
new challenges to the smart grid. HomChaudhuri and Kumar (2011)
and HomChaudhuri et al. (2011, 2012) proposed a market-based power
matching framework. Due to the uncertainty in the electricity gen-
eration, they offered a market-based linear optimization approach to
minimize the electricity distribution loss (HomChaudhuri and Kumar,
2011). They executed an auction based on bids for the resource cost,
which was iteratively updated by a simple price updating mechanism.
Then, the authors extended the same single-objective model into a
distributed optimization model assuming each customer as a discrete
agent decomposing the complex power matching problem into small-
scale agent-based sub-optimization problems (HomChaudhuri et al.,
2011). Finally, the authors engaged the extended model with the
optimal power flow problem to ensure the grid stability (HomChaudhuri
et al., 2012). To this end, a linear programming mechanism has been
used to route the produced electricity optimally through minimizing the
overall electricity generation cost.

Even though the achievements discussed in the aforementioned
papers demonstrate the overall cost reduction, however,: 1) proposed
models force customers to only have one-to-one power exchanges,
2) the market operator makes the contracts utilizing a simple price
updating mechanism, 3) the total production is more than the total de-
mand, which leads the analysis not to confront any critical circumstance,
and 4) the remaining demand of unsatisfied buyers at each interval
are transferred to the future, which decreases the customers’ comfort
level. To overcome these weaknesses, Azar et al. (2014) provided an
agent-based power matching framework to optimize the customers’
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purchasing cost considering their matching interest tables in smart
electricity markets (Bichler et al., 2010). Each customer, with respect
to electricity prices offered by producers and their pairwise Euclidean
distance, creates an interest table based on his/her demand or pro-
duction. Since the general power matching problem is NP-complete,
they employed evolutionary computations and proposed a greedy power
matching algorithm based on the interest tables. The analysis clearly
indicated the significant cost reduction whilst equilibrating electricity
prices.

Most recently, Razzaq et al. (2016) studied a similar problem and
proposed an energy management framework for cooperation between
customers. It attempted to minimize demand–supply mismatch, where
sellers were equipped with renewable energy sources willing to sell
their surplus energy to the grid. However, the formulation was only
in the favor of buyers, in which maximum possible surplus energy
was allocated to those with the maximum shortage and minimum
associated price. Similarly, AlSkaif et al. (2016) addressed the same
renewable power sharing challenge based on a repeated game among
customers. Although they claimed that formulating the problem as
a game led to a decentralized power sharing framework, however,
they failed to: 1) consider electricity distribution loss, 2) respect grid
stability constraints, and 3) use a dynamic electricity pricing scheme
to calculate the payoffs and costs. Hong and Kim (2016) challenged
the multi-objective energy routing problem with a similar game theory
approach. Desired transaction price was set centrally to maximize profits
while maximizing the cost. Minimization of the electricity distribution
loss was mapped to the known traditional transportation problem. The
simulations did not analyze how optimizing the conflictive objectives
influenced the demand and supply prices over time.

As a recent challenging problem in this context, Malik and Lehtonen
(2016) investigated the potentiality of matching high penetration of
electric vehicles with intermittent renewable energy sources in the
form of short-term power imbalances using a simple bidding–asking
algorithm. They proposed an agent-based electricity market model for
grid-to-vehicle and vehicle-to-grid power transactions while studying
the optimal battery price for a better electric vehicle participation in
the grid’s operation. Finally, Endo et al. (2016) claimed that a real-time
centralized multi-seller/multi-buyer power trading system would yield
a truly competitive market, where anyone could become a power seller
or buyer. They proposed a distributed power cooperation algorithm
that maximized each customer’s welfare based on local information.
The authors considered that peer-to-peer information exchange and
demand/supply balancing in a neighborhood were performed automat-
ically using an energy consumption controller embedded in the home
gateway. Nevertheless, the results assumed that buyers and sellers were
equal. Also, no Pareto-front was given to show the diversity of solutions
due to the conflictive nature of objectives.

This paper is an extended version of work published in Azar et
al. (2014) and to account for the gaps identified in Kirschen (2003),
Ventosa et al. (2005), Chai et al. (2016), Jornada and Leon (2016),
Ashkaboosi et al. (2016), Dourbois and Biskas (2016), Sardou and Ameli
(2016), Müller et al. (2016), Chen et al. (2010), Nygard et al. (2011),
HomChaudhuri and Kumar (2011), HomChaudhuri et al. (2011, 2012),
Bichler et al. (2010), Razzaq et al. (2016), AlSkaif et al. (2016), Hong
and Kim (2016), Malik and Lehtonen (2016), and Endo et al. (2016),
makes the following contributions:

∙ Proposing a highly-functional power matching framework run-
ning in a day-ahead electricity market;

∙ Engaging multi-objective optimization techniques with the
framework considering the minimization of buyers’ power pur-
chasing cost and the maximization of sellers’ power selling
benefit at the same time;

∙ Providing a robust multi-objective power matching algorithm
based on the minimization of electricity distribution loss;

∙ Proposing a new two-stage iterative price updating mechanism
to update the electricity price offers over time;

∙ Adapting the framework to the electrical grid topology consider-
ing grid stability constraints.

3. Power matching framework: A multi-objective approach

Fig. 2 illustrates the conceptual view of the framework adapted
to the current structure of the electrical grid. The electric power
is transmitted through high-voltage transmission lines, terminates in
several feeders, and finally, reaches customers (Machowski et al., 2011).
Let 𝐹 =

{

𝑓1, 𝑓2,… , 𝑓𝐾
}

be a set of electricity distribution feeders.
Each feeder 𝑓𝑘, where 𝑘 ∈ {1, 2,… , 𝐾}, hosts two non-empty sets of
buyer agents 𝑓𝐵𝑘 and seller agents 𝑓𝑆𝑘 . Then, let B =

⋃𝐾
𝑘=1𝑓

𝐵
𝑘 and

S =
⋃𝐾
𝑘=1𝑓

𝑆
𝑘 be collections of sets of buyers and sellers, respectively.

This paper assumes there is an power plant 𝜉, which is always capable
of undertaking the buyers’ electricity demand satisfaction in critical
and unpredictable circumstances, for instance, when there is no seller
with any adequate surplus energy. This power plant has two specific
characteristics: being far from the main electricity distribution grid and
offering a high electricity price. The framework, by applying two power
trading methods named Customer-Customer and Customer-to-
PowerPlant, strives to keep the power exchanges more distributed.
For the former, we define two power trading sub-methods named
Inside-Feeder and Feeder-to-Feeder. These methods will be
described in more detail later.

Next, we define how buyers and sellers using these layers are
formulated.

3.1. Customers domain

As information is basically distributed over customer agents in the
smart grid, we use three layers of agent’s strategy design, i.e., the
information, knowledge, and behavior (Lamparter et al., 2010). For each
customer agent:

∙ Information: Providing demand/surplus, electricity price offer,
and location.

∙ Knowledge: Obtaining other agents’ information.
∙ Behavior: Behaving rationally with respect to the available

information and knowledge.

3.1.1. Buyer agents
Let 𝑓𝐵𝑘 =

{

𝑏1,𝑘, 𝑏2,𝑘,… , 𝑏𝑁𝑘 ,𝑘
}

be a set of 𝑁𝑘 ∈ N buyers connected
to feeder 𝑓𝑘. Each buyer 𝑏𝑖,𝑘, where 𝑖 ∈

{

1, 2,… , 𝑁𝑘
}

, holds a set of
appliances. Let

𝐷𝑏𝑖,𝑘 =
{

𝑑1𝑏𝑖,𝑘 , 𝑑
2
𝑏𝑖,𝑘
,… , 𝑑𝑇𝑏𝑖,𝑘

}

, (1)

where𝐷𝑏𝑖,𝑘 denote the set of load demands of buyer 𝑏𝑖,𝑘. 𝑑𝑡𝑏𝑖,𝑘 ∈ Z∗ (kWh)
is the aggregated load demand at time interval 𝑡, where 𝑡 ∈ {1, 2,… , 𝑇 }.
Let

𝑑𝑡𝑏𝑖,𝑘 =
⎢

⎢

⎢

⎣

𝐾
∑

𝑔=1

𝑀𝑔
∑

𝑗=1
𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 ×

(

1 − 𝑙𝑜𝑠𝑠𝑏𝑖,𝑘𝑠𝑗,𝑔
)
⎥

⎥

⎥

⎦

+
⌊

𝑥𝑡𝑏𝑖,𝑘𝜉 ×
(

1 − 𝑙𝑜𝑠𝑠𝑏𝑖,𝑘𝜉
)⌋

, (2)

where 𝑓𝑆𝑔 =
{

𝑠1,𝑔 , 𝑠2,𝑔 ,… , 𝑠𝑀𝑔 ,𝑔

}

is a set of 𝑀𝑔 ∈ N sellers connected
to feeder 𝑓𝑔 . 𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 , 𝑥

𝑡
𝑏𝑖,𝑘𝜉

∈ Z∗ (kWh) are the decision variables of
the optimization problem (will be described later). They represent the
total electric energy transferred from ‘‘seller 𝑠𝑗,𝑔 ’’ and ‘‘power plant
𝜉’’ to buyer 𝑏𝑖,𝑘 at each time interval 𝑡, respectively. Buyer 𝑏𝑖,𝑘 is able
to negotiate with sellers connected to the same feeder, i.e., 𝑘 = 𝑔
(using inside-feeder trading method, or even other feeders, i.e., 𝑘 ≠
𝑔 (feeder-to-feeder trading method). This also ensures buyers from
completely satisfying their demands over time. The electricity produced
does not match with the electricity reached customers. Technical loss of
electric power in the distribution grid is due to the distribution network
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Fig. 2. Conceptual view of the framework adapted to the current structure of
the electrical grid.

transformers and cables (International Electrotechnical Commission
et al., 2007). We define an Electricity Loss Factor, 𝐸𝐿𝐹 ∈ (0, 1),
where 𝐸𝐿𝐹 𝑓 , 𝐸𝐿𝐹 𝜉 correspond to the Customer-Customer and
Customer-to-PowerPlant methods, respectively. 𝐸𝐿𝐹 is propor-
tional to the square of current, resistance, and the total electric power
being transported in a cable. Let

𝑙𝑜𝑠𝑠𝑏𝑖,𝑘𝑠𝑗,𝑔 = 𝐸𝐿𝐹 𝑓 × 𝐸
(

𝐿𝑏𝑖,𝑘 , 𝐿𝑠𝑗,𝑔
)

,

𝑙𝑜𝑠𝑠𝑏𝑖,𝑘𝜉 = 𝐸𝐿𝐹 𝜉 × 𝐸
(

𝐿𝑏𝑖,𝑘 , 𝐿𝜉
)

,
(3)

where 𝐸 is the Euclidean distance functions. 𝐿𝑏𝑖,𝑘 , 𝐿𝑠𝑗,𝑔 , and 𝐿𝜉 are
the locations of buyer 𝑏𝑖,𝑘, seller 𝑠𝑗,𝑔 , and power plant 𝜉 respectively
(Chiradeja, 2005). Although the buyer should purchase more electric
energy at each time interval 𝑡, however, equality in Eq. (2) shows that
the buyer must exactly receive 𝑑𝑡𝑏𝑖,𝑘 electric energy (after loss), since no
storage option is considered.

3.1.2. Sellers agents
Let us assume each seller agent 𝑠𝑗,𝑔 possesses a set of DERs, e.g., Pho-

tovoltaic solar panels, as a small power plant (Lasseter, 2002). Each DER
first satisfies the load demands of the seller’s appliances and then, the
remaining is provided to buyers. Therefore, let

𝑄𝑠𝑗,𝑔 =
{

𝑞1𝑠𝑗,𝑔 , 𝑞
2
𝑠𝑗,𝑔
,… , 𝑞𝑇𝑠𝑗,𝑔

}

, (4)

where 𝑄𝑠𝑗,𝑔 is the set of surplus energy over time. 𝑞𝑡𝑠𝑗,𝑔 ∈ Z∗ (kWh) is the
amount of surplus energy of seller 𝑠𝑗,𝑔 at time interval 𝑡. For the sake
of simplicity, we do not consider the electricity production and energy
storage costs, however, the framework is completely expandable. Let
𝐾
∑

𝑘=1

𝑁𝑘
∑

𝑖=1
𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 ≤ 𝑞𝑠𝑗,𝑔 , (5)

where it clearly shows that seller agents can sell their surplus energy
to buyers connected to any feeder. The remaining is not transferred to
future time intervals (storing capability will be studied in the future).
Thus, seller agents are interested in increasing the total electricity sold
at each time interval. Nevertheless, due to the potential electricity pro-
duction cost, it is likely for them not to sell electricity in some periods,
e.g., when the market price is low. This challenge can be relieved by
considering the agents’ decision as a strategic game (Saad et al., 2011).
In that situation, they can modify their production volume effectively
considering the following items: 1) total ‘‘electricity sold’’ and the
‘‘electricity production cost’’ at current time interval, 2) future load
consumption behavior of all customer agents, and 3) electricity prices.
It is worthwhile noting that the current structure of the framework is
able to easily cope with these fundamental updates in the future.

3.2. Markets domain

In the smart grid, the power trading is definitely based on market-
driven principles. From the economic point of view, the electricity is
bought and sold as a commodity. We envision an electricity market,
which intelligently balances the supply with demand while providing
reasonable electricity market prices. This paper proposes the power
matching framework for a retail electricity market. In fact, the electric
energy is traded through bids to buy and offers to sell, which finally,
terminates in short-term contracts in the form of financial or obligation
swaps. The market operator intends to match parties to these contracts
based on a competitive market model.

3.2.1. Market operator
We assume the market operator runs the power matching framework

on a day-ahead basis. Its main responsibility includes clarifying: 1)
which pair of customers should make a contract with each other, 2)
how much electric power transfer should be specified in each contract,
and 3) what the energy price should be. To this end, let

min𝐺(𝑥) =
𝑇
∑

𝑡=1

𝐾
∑

𝑘=1

⎛

⎜

⎜

⎝

𝐾
∑

𝑔=1

𝑁𝑘
∑

𝑖=1

𝑀𝑔
∑

𝑗=1

(

𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 × 𝑝𝑑
𝑡
)

+
𝑁𝑘
∑

𝑖=1

(

𝑥𝑡𝑏𝑖,𝑘𝜉 × 𝑝𝜉
)
⎞

⎟

⎟

⎠

,

max𝐻(𝑥) =
𝑇
∑

𝑡=1

𝐾
∑

𝑘=1

𝐾
∑

𝑔=1

𝑁𝑘
∑

𝑖=1

𝑀𝑔
∑

𝑗=1

(

𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 × 𝑝𝑑
𝑡 ×

(

1 − 𝑙𝑜𝑠𝑠𝑏𝑖,𝑘𝑠𝑗,𝑔
))

,

(6)

where 𝐺(𝑥) shows buyers’ interest in paying for the electricity at
the lowest possible cost. This can be done by decreasing the total
purchased electric energy considering the full demand satisfaction (see
Eq. (2)). 𝐺(𝑥) is split to two Customer-Customer and Customer-
to-PowerPlant contracts. 𝑝𝜉 ∈ R∗ stands for the fixed electricity
price offered by the power plant 𝜉. In contrast, 𝐻(𝑥) shows sellers
are eager to increase their selling benefit. This can also be done by
increasing the total electricity sold considering the remaining surplus
energy (see Eq. (5)). To equalize the penalty of electricity distribution
loss among customers, each seller benefits less than the real expected
benefit. Evidently, these objective functions are in conflict with each
other, since increasing or decreasing 𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 and 𝑥𝑡𝑏𝑖,𝑘𝜉 causes each
objective to behave differently. This multi-objective optimization model
demonstrates how the market operator is able to change the market’s
behavior in miscellaneous circumstances with respect to ‘‘distinguish-
able solutions’’ obtained from this framework. It would also be possible
to consider both objectives linearly as one single function. To make
contracts, the market operator announces 𝑝𝑑𝑡 ∈ Z∗ ($/kWh) as the
electricity price at time interval 𝑡. Next, we describe how the market
operator, by using a two-stage price updating mechanism, calculates
𝑝𝑑𝑡 over time.

3.3. Two-stage price updating mechanism

This paper designs a novel day-ahead electricity pricing scheme, in
which customers are its most important players. Its main advantage is
twofold: 1) meeting the demand response goal, i.e., matching demand
with supply, and 2) helping the customers increase their social welfare
(optimization objectives). This mechanism is used at each time interval.
In the first stage, each customer agent offers a price to trade each
electric energy unit in the market. In the second stage, the market
operator updates the electricity price considering the electricity price
offers received from the first stage. This mechanism does not consider
Customer-to-PowerPlant contracts. Here, no offer is broadcast
erroneously, since this mechanism assumes customers are trustworthy
and their privacy is ensured.
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3.3.1. First stage
Let

𝑝𝑏1𝑖,𝑘 ∈
[

𝑝𝑙 , 𝑝𝑢
]

,

𝑝𝑠1𝑗,𝑔 ∈
[

𝑝𝑙 , 𝑝𝑢
]

,

𝑝𝑏𝑡+1𝑖,𝑘 = 𝑝𝑏𝑡𝑖,𝑘 −
(

𝛾𝑏𝑖,𝑘 ×
(

𝑝𝑏𝑡𝑖,𝑘 − 𝑝𝑏
𝑡))

,

𝑝𝑠𝑡+1𝑗,𝑔 = 𝑝𝑠𝑡𝑗,𝑔 −
(

𝛾𝑠𝑗,𝑔 ×
(

𝑝𝑠𝑡𝑗,𝑔 − 𝑝𝑠
𝑡
))

,

(7)

where 𝑝𝑙 , 𝑝𝑢 ∈ Z∗ ($/kWh) are the minimum and maximum offerable
electricity prices in the market, respectively. This range ensures the
market not to confront any abnormal electricity price. 𝑝𝑏𝑡𝑖,𝑘, 𝑝𝑠

𝑡
𝑗,𝑔 ∈ Z∗

($/kWh) are the electricity prices offered by buyer 𝑏𝑖,𝑘 and seller 𝑠𝑗,𝑔 at
time interval 𝑡, respectively. Let

𝑝𝑏
𝑡
=
⎢

⎢

⎢

⎢

⎣

∑𝐾
𝑘=1

∑𝑁𝑘
𝑖=1

(

𝑑𝑡𝑏𝑖,𝑘 × 𝑝𝑏
𝑡
𝑖,𝑘 × 𝛾𝑏𝑖,𝑘

)

∑𝐾
𝑘=1

∑𝐾
𝑔=1

∑𝑁𝑘
𝑖=1

∑𝑀𝑔
𝑗=1

(

𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 × 𝑝𝑑
𝑡
)

⎥

⎥

⎥

⎥

⎦

,

𝑝𝑠𝑡 =
⎢

⎢

⎢

⎢

⎣

∑𝐾
𝑔=1

∑𝑀𝑔
𝑗=1

((

∑𝐾
𝑘=1

∑𝑁𝑘
𝑖=1 𝑥

𝑡
𝑏𝑖,𝑘𝑠𝑗,𝑔

)

× 𝑝𝑠𝑡𝑗,𝑔 × 𝛿𝑠𝑗,𝑔
)

∑𝐾
𝑘=1

∑𝐾
𝑔=1

∑𝑁𝑘
𝑖=1

∑𝑀𝑔
𝑗=1

(

𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 × 𝑝𝑑
𝑡
)

⎥

⎥

⎥

⎥

⎦

,

(8)

where 𝑝𝑏
𝑡
, 𝑝𝑠𝑡 ∈ Z∗ are the weighted average of electricity prices offered

by buyers and sellers at time interval 𝑡, respectively. The rationale
behind using

(

𝑝𝑏𝑡𝑖,𝑘 − 𝑝𝑏
𝑡)

and
(

𝑝𝑠𝑡𝑗,𝑔 − 𝑝𝑠
𝑡
)

in Eq. (7) is the need for
having a quick balance in the electricity market. The market operator
encourages each customer to update the electricity price offer to make it
as close to the corresponding weighted average of electricity price offers
as possible. The difference in the numerators in Eq. (8) comes from the
buyers’ full demand satisfaction constraint (see Eq. (2)). Buyers have
to satisfy their demands anyway while sellers benefit from the amount
they sell, not their surplus energy.

From the economic point of view, customers have some charac-
teristics, such as the financial situation, risk-taking threshold, level of
confidence, etc. These characteristics measure their financial ability
considering the available funding support (Bichler et al., 2010). Moving
over time, these characteristics get influenced by the fluctuation of some
market parameters, e.g., attractiveness, competitiveness, etc. Thus, to
engage customers with the two-stage price updating mechanism, we
propose new parameters named malleability rates 𝛾, 𝛿 ∈ [0, 1) for
buyers and sellers, respectively. We assume the malleability rate of the
power plant is zero (lowest possible). Market parameters have a direct
influence on these rates. The value of the malleability rate affects the
performance of the following actions: 1) offering an appropriate initial
electricity price, 2) updating electricity price offers, and 3) updating the
weighted average of electricity prices offered by customers.

The weighted average of electricity price offers is a reliable target for
customers. For instance, let us assume a seller, who: 1) offers the highest
possible amount of energy, and 2) expects to sell all or, at least, a big
portion of his/her surplus energy. With respect to the buyers’ objective,
probably no buyer is found to purchase any unit of electricity from
that seller agent. On one hand, the seller has to decrease the value of
the electricity price offer consecutively at a rate to get as close to the
weighted average of electricity prices as possible. On the other hand,
the malleability rate should be relatively high since it permits the agent
to update electricity price offers rapidly. This would definitely help the
agent increase the total electric energy being sold in the short term. As
a result, the malleability rate effectively helps customers and market
operator make more profitable contracts while dealing with fluctuating
electricity price offers. In the interest of simplicity, the calculation
method of this parameter is eliminated (Bichler et al., 2010).

3.3.2. Second stage
Let

𝑝𝑑𝑡 =

(

|B| × 𝑝𝑏
𝑡)

+
(

|S| × 𝑝𝑠𝑡
)

|B ∪ S|
, (9)

Table 1
Customers’ status in various critical situations in the grid.

|B|≪ |S| |B|≫ |S|
∑𝐾
𝑘=1

∑𝑁𝑘
𝑖=1 𝑑

𝑡
𝑏𝑖,𝑘
≪

∑𝐾
𝑔=1

∑𝑀𝑔

𝑗=1
𝑞𝑡
𝑠𝑗,𝑔

Buyers dominate sellers and 𝑝𝑑𝑡 is close to 𝑝𝑏
𝑡
.

∑𝐾
𝑘=1

∑𝑁𝑘
𝑖=1 𝑑

𝑡
𝑏𝑖,𝑘
≫

∑𝐾
𝑔=1

∑𝑀𝑔

𝑗=1
𝑞𝑡
𝑠𝑗,𝑔

Sellers dominate buyers and 𝑝𝑑𝑡 is close to 𝑝𝑠𝑡.

where it defines the electricity market price 𝑝𝑑𝑡 at each time interval
𝑡. Table 1 lists situations discussing how market’s competitiveness and
attractiveness can influence the market’s fixed price at each time inter-
val. For situations listed in the first row, there are many sellers available
to negotiate with few buyers. Thus, their market share tends to be very
small and therefore, their price offers should be low. For other situations,
buyers should compete to have more Customer--Customer power
exchanges rather than Customer-to-PowerPlant contracts. Here,
sellers will offer high prices for their surplus electric energy, since all
will definitely be sold. Therefore, it is very important to have a balance
between ‘‘customer participation percentage’’ and ‘‘amount of demand
and supply.’’

3.4. Grid stability constraints

The Council of European Energy Regulators (CEER) splits the quality
of electricity supply into three components: continuity of supply, voltage
quality, and commercial quality (Council of European Energy Regulators
(CEER), 2018). The first two components fall outside the scope of this
paper. The third component is crucial for markets since market-based
grid stability refers to the grid’s ability in maintaining the continuity of
supply and demand balance in case of perturbations. DSOs, as maintain-
ers of the electricity distribution grid, impose some capacity constraints.
The main motivation for engaging the multi-objective power matching
framework with grid stability constraints is to improve the stability of
the power system in the face of the growing penetration of intermittent
DERs. It is important that such frameworks do not compromise the
quality of supply. The main grid stability challenge arises from the
mismatch between production and demand on the markets’ premises.
Since there is a little prior experience on the impact of power matching
frameworks on the quality of supply, its investigation has been included
at an early stage in this paper. With respect to the physical dynamics of
the electrical grid system, this paper considers the electricity demand
threshold as the hard grid constraint (Jacobsen et al., 2015). Let

𝐴1 =
𝑁𝑘
∑

𝑖=1

𝑀𝑘
∑

𝑗=1
𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑘 , (10)

where 𝐴1 ∈ Z∗ (kWh) is the total energy transferred among customers
at time interval 𝑡 using the Inside-Feeder trading method. Let

𝐴2 =
𝐾
∑

𝑔=1⧵𝑔≠𝑘

𝑁𝑘
∑

𝑖=1

𝑀𝑔
∑

𝑗=1
𝑥𝑡𝑏𝑖,𝑘𝑠𝑗,𝑔 , (11)

where 𝐴2 ∈ Z∗ (kWh) is the total energy that buyers, using Feeder-
to-Feeder method, buy at time interval 𝑡. Following this, let

𝐴3 =
𝐾
∑

𝑘=1⧵𝑘≠𝑔

𝑀𝑔
∑

𝑗=1

𝑁𝑘
∑

𝑖=1
𝑥𝑡𝑏𝑖,𝑔𝑠𝑗,𝑘 , (12)

where 𝐴3 ∈ Z∗ (kWh) is the total energy that sellers, using Feeder-
to-Feeder method, sell at time interval 𝑡. Finally, let

𝐴4 =
𝑁𝑘
∑

𝑖=1
𝑥𝑡𝑏𝑖,𝑔𝜉 , (13)

where 𝐴4 ∈ Z∗ (kWh) is the total energy transferred from the power
plant 𝜉 to buyers at time interval 𝑡. Then, let

𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 ≤ 𝐸𝐷𝑇 𝑡𝑘, (14)
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where𝐸𝐷𝑇 𝑡𝑘 ∈ Z∗ (kWh) is the electricity demand threshold imposed by
feeder 𝑓𝑘 at time interval 𝑡. We call 𝐸𝐷𝑇 𝑡𝑘 a hard threshold meaning that
violating it will jeopardize electrical grid services (Azar et al., 2015).
It should be mentioned that the grid stability cannot be guaranteed
by considering only electricity demand threshold and disregarding
other technical issues such as capacity limits, network congestions,
and inappropriate voltage profiles. A comprehensive stability analysis
should be invested on the physical dynamics of the electrical grid and
their behavior, when a new pricing scheme is introduced. Although
it falls out of the scope of this paper, however, the multi-objective
power matching framework is completely compatible with adding other
grid constraints. Next, we propose the multi-objective power matching
algorithm.

4. Multi-objective power matching algorithm: An evolutionary
approach

The multi-objective power matching problem is NP-complete by
a reduction from the general quadratic assignment problem (Lawler,
1963). In the assignment problem, there are two sets of 𝑣 ∈ N facilities
and 𝑤 ∈ N locations. For each pair of facilities a weight and for each
pair of locations a Euclidean distance are specified. The purpose is to
assign all facilities to different locations with the goal of minimizing the
sum of distances multiplied by the corresponding flows.

To operate the multi-objective power matching framework neces-
sitates the market operator computing all or a representative set of
solutions. Each solution is represented as an admissible collection of
customers’ contracts on the daily basis specifying ‘‘how much electric
energy’’ each buyer agent should purchase from each seller agent and
the power plant at each time interval. The reason for producing this set
is the conflicting nature of objectives (see Eq. (6)). A solution refers to
the state where it is impossible to make any solution better off without
making at least one solution worse. The market operator aims at finding
a Pareto-front in the objective space including a set of non-dominated
solutions as diverse as possible. In this space, one solution can dominate
another one, when it is better with values of some objectives and perhaps
is equivalent to values of other objectives. Evolutionary algorithms
are one of the most well-known meta-heuristic search mechanisms
utilized to generate these solutions to a multi-objective optimization
problem. An important advantage of evolutionary algorithms is that
they are free of the difficulties and properties of the objective function
(e.g., discreteness or continuity, convexity, differentiability, etc.) (Deb,
2001).

This paper proposes a Revised version of Non-dominated Sorting
Genetic Algorithm-II (RNSGA-II) (Deb et al., 2000). NSGA-II is among
the most popular multi-objective evolutionary algorithms due to its
fast non-dominated sorting approach and ability to find a much better
spread and convergence of solutions near the true Pareto-front. Fig. 3
demonstrates the flowchart of RNSGA-II.

Preprocessing is done to initiate the simulation structure and analyze
the input data. The algorithm starts randomly generating an initial
parent population Q =

{

𝜑1, 𝜑2,… , 𝜑𝑄
}

including 𝑄 ∈ N feasible
solutions 𝜑𝑎, where 𝑎 ∈ {1, 2,… , 𝑄}. The fitness value of each solution
is evaluated through the objective functions (see Eq. (6)). Then, RNSGA-
II creates possible Pareto-fronts using the dominance rule, as Fig. 4
pictures.

To distinguish among solutions in each Pareto-front, a niching strat-
egy, named crowding distance, is used to assign a value to each solution
in the Pareto-front. Fig. 5 shows its schematic view. The crowding
distance is a measure of how close a solution is to its neighbors in the
objective space. A larger crowding distance indicates the solution is far
away from others. To this end, RNSGA-II sums the Euclidean distances
among each solution and its nearest left and right neighbors in the
objective space, as the largest hypercube around it. The first and the last
solutions in each Pareto-front, to preserve the diversity, are assigned a
crowding distance of infinity.

Fig. 3. Flowchart of the RNSGA-II.

Fig. 4. A Pareto-front in the RNSGA-II.

Fig. 5. Crowding distance.

RNSGA-II continues until the maximum number of generations 𝑊 ∈
N is reached. In each generation, it produces new solutions (children),
handles their constraints, applies the elitism to them, and finally,
updates the parent population. The output of RNSGA-II is the set of
solutions lying on the first Pareto-front. Next, we precisely clarify each
part of RNSGA-II.

4.1. Initial parent population

Fig. 6 displays how a single power matching solution is produced.
Let

𝜑𝑎 =
𝑇
⋃

𝑡=1
C𝜑𝑎𝑡,

C𝑡𝜑𝑎 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑡𝑏1,1𝑠1,1 ⋯ 𝑥𝑡𝑏𝑁𝑘,𝑘𝑠1,1
⋮ ⋱ ⋮

𝑥𝑡𝑏1,1𝑠𝑀𝑘,𝑘
⋯ 𝑥𝑡𝑏𝑁𝑘,𝑘𝑠𝑀𝑘,𝑘

⎤

⎥

⎥

⎥

⎥

⎦

,

(15)
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Fig. 6. Flowchart of producing a single power matching solution.

where 𝜑𝑎 is a single matching solution encoded as 𝑇 matrices. Each
matrix C𝑡𝜑𝑎 is |B| × |S| contracts at time interval 𝑡 comprising the total
units transferred among customers. Contracts made by the Customer-
to-PowerPlant method is also added to each matrix. Regarding
the scalability of the framework, given that although the number of
customers in a small/medium city may reach the order of thousands or
more, however, since the framework is semi-decentralized and executed
in various independent feeders in parallel, it is possible to scale it up,
since each feeder serves only a small sub-set of customers in the grid.

As Fig. 6 shows, first, for each feeder 𝑓𝑘, corresponding buyer
agents start negotiating with corresponding seller agents. Second, an
unsatisfied buyer, who still needs some energy, negotiates with sellers
connected to other feeders. Finally, the power plant undertakes the
remaining demand of unsatisfied buyers. These steps will completely
satisfy the buyers’ full demand satisfaction and sellers’ limited surplus
energy constraints (see Eqs. (2) and (5)). Then, the two-stage price up-
dating mechanism updates electricity prices accordingly. In conclusion,
the output is an acceptable power matching solution.

To perform each trading method, Algorithm 1 proposes a negotiation
procedure. This procedure is incorporated into all trading methods.
For the Inside-Feeder method, 𝑘 = 𝑔 while for the Feeder-
to-Feeder method 𝑘 ≠ 𝑔. Obviously, electricity distribution loss
is considered prior to making any transfer over time. The reason is
that the power transferred in the system is lower than the actual
contracted amount. RNSGA-II, to produce 𝑄 solutions together as a
parent population, performs the following three power trading methods,
as described in Fig. 6.
Algorithm 1: The Negotiation Procedure

1 if 𝑞𝑡𝑠𝑗,𝑔 ≥
(

𝑑𝑡𝑏𝑖,𝑘 ×
(

1 + 𝑙𝑜𝑠𝑠𝑏𝑖,𝑘 𝑠𝑗,𝑔
))

then

2 𝑞𝑡𝑠𝑗,𝑔 = 𝑞𝑡𝑠𝑗,𝑔 −
(

𝑑𝑡𝑏𝑖,𝑘 ×
(

1 + 𝑙𝑜𝑠𝑠𝑏𝑖,𝑘 𝑠𝑗,𝑔
))

;

3 𝑥𝑡𝑏𝑖,𝑘 𝑠𝑗,𝑔 = 𝑑𝑡𝑏𝑖,𝑘 ×
(

1 + 𝑙𝑜𝑠𝑠𝑏𝑖,𝑘 𝑠𝑗,𝑔
)

;
4 𝑑𝑡𝑏𝑖,𝑘 = 0;
5 else
6 𝑥𝑡𝑏𝑖,𝑘 𝑠𝑗,𝑔 = 𝑞𝑡𝑠𝑗,𝑔 ;

7 𝑑𝑡𝑏𝑖,𝑘 = 𝑑𝑡𝑏𝑖,𝑘 −
(

𝑞𝑡𝑠𝑗,𝑔 ×
(

1 − 𝑙𝑜𝑠𝑠𝑏𝑖,𝑘 𝑠𝑗,𝑔
))

;
8 𝑞𝑡𝑠𝑗,𝑔 = 0;
9 end

4.1.1. Inside-feeder power trading
Algorithm 2 demonstrates the Inside-Feeder power trading

method. One of the main challenges in the power matching problem
is to find an optimal order of buyers and sellers to start the negotiation.
The best permutation of buyers and sellers results in an optimal power
allocation. However, since this paper focuses on the multi-objective
power matching approach, obviously, it is impossible to find this unique
set. For instance, one method is to start with those buyers whose
contracts might have more electricity distribution losses. This happens
when they have to purchase from sellers connected to other feeders. This
method obviously violates the equality of buyers since we assume all are
residential customers. As a result, we randomly generate a permutation
set of buyers and sellers at the feeder’s level.

Algorithm 2: Inside-Feeder Power Trading
1 for 𝑘 = 1 to 𝐾 do
2 Randomly select a permutation of buyers and sellers say

(

𝑏1,𝑘, 𝑏2,𝑘,… , 𝑏𝑁𝑘 ,𝑘
)

and
(

𝑠1,𝑘, 𝑠2,𝑘,… , 𝑠𝑀𝑘 ,𝑘

)

, respectively;
3 for 𝑖 = 1 to 𝑁𝑘 do
4 for 𝑗 = 1 to 𝑀𝑘 do
5 if

(

𝑞𝑡𝑠𝑗,𝑔 > 0
)

and
(

𝑑𝑡𝑏𝑖,𝑘 > 0
)

then
6 Run Algorithm 1;
7 end
8 end
9 end
10 end

4.1.2. Feeder-to-feeder power trading
Algorithm 3 describes how an unsatisfied buyer, who still needs

some energy, is searching for sellers, connected to other feeders. Here, a
random permutation of feeders is also generated. Due to the electricity
distribution loss, customers intend to negotiate with close neighbors
connected to other feeders. Since the negotiation is only based on the
minimization of electricity distribution loss, therefore, a larger distance
implies more loss.
Algorithm 3: Feeder-to-Feeder Power Trading
1 Select a random permutation of feeders, say

(

𝑓1, 𝑓2,… , 𝑓𝐾
)

;
2 for 𝑘 = 1 to 𝐾 do
3 if ∃𝑏𝑖,𝑘 ∈ 𝑓𝐵𝐾 such that remaining 𝑑𝑡𝑏𝑖,𝑘 > 0 then
4 Sort Euclidean distances among buyer 𝑏𝑖,𝑘 connected to

feeder 𝑓𝑘, and all sellers, connected to other feeders,
ascendingly;

5 for 𝑐 = 1 to 𝐾 do

6 if
((

𝑀𝑐
∑

ℎ=1
𝑞𝑡𝑠ℎ,𝑐

)

> 0

)

and (𝑐 ≠ 𝐾) then

7 for ℎ = 1 to 𝑀𝑐 do
8 if 𝑞𝑡𝑠ℎ,𝑐 > 0 then
9 Run Algorithm 1;
10 end
11 end
12 end
13 end
14 end
15 end

4.1.3. Customer-to-PowerPlant power trading
After executing Algorithms 2 and 3, Algorithm 4 shows how the

power plant satisfies the remaining load demand of unsatisfied buy-
ers. Considering this plant alone does not completely prevent the
electrical grid from any black-outage (Amin and Wollenberg, 2005).
This emphasizes the necessity of paying a sufficient attention to some
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electricity demand thresholds for feeders and households to shape load
consumptions (Azar et al., 2015).
Algorithm 4: Customer-to-PowerPlant Power Trading
1 for 𝑘 = 1 to 𝐾 do
2 if ∃𝑏𝑖,𝑘 ∈ 𝑓𝐵𝑘 such that remaining 𝑑𝑡𝑏𝑖,𝑘 > 0 then

3 𝑥𝑡
𝑏𝑖,𝑘 𝜉

= 𝑑𝑡𝑏𝑖,𝑘 ×
(

1 + 𝑙𝑜𝑠𝑠𝑏𝑖,𝑘 𝜉
)

;
4 𝑑𝑡𝑏𝑖,𝑘 = 0;
5 end
6 end

4.1.4. Robustness analysis of various challenges in producing the initial
parent population

Constructing a robust procedure to produce a good parent population
is a challenging issue. In particular, robustness can have various conno-
tations in different circumstances. In the problem under investigation,
it could allude to the possible failures that could occur while the
electricity is distributed among the agents. The following describes
some challenging scenarios, RNSGA-II can face at each time interval.
A reliable solution follows each scenario.

First Scenario: Let us suppose the total load demand at a time interval
is greater than the total surplus energy. There will be, at least, one
unsatisfied buyer after running the first two power trading methods (see
Algorithms 2 and 3). According to full demand satisfaction constraint
(see Eq. (2)), the framework has to find a way to supply the remaining
demand. This proves the reason of having a backup power plant, as
Algorithm 4 describes. In fact, buyers’ welfare will not be optimized
since the electricity distribution loss of and purchasing cost from the
power plant are high.

Second Scenario: The best case of the problem occurs, when the total
demand at each time interval meets the total supply. Here, all buyers,
without purchasing any electric energy from the power plant, will
be satisfied through sellers. Furthermore, in this condition, sellers are
completely satisfied since they can sell all their surplus energy. As
a result, continuous occurrence of this situation maximizes the social
welfare of all customers globally.

Third Scenario: The last scenario happens, when the total surplus
energy at each time interval is greater than the total demand. In this cir-
cumstance, buyers are again satisfied through sellers while some sellers
cannot sell all their surplus production. Here, buyers are able to optimize
their social welfare, nevertheless, sellers are unable to do so due to
having, at least, one seller who still has some electric energy to sell.

Next, we clarify how the exploitation and exploration procedures
in each generation are applied to the parent population to create the
children population.

4.2. Exploitation and exploration

The diversity of a population is known as one of the utmost important
factors to reach a near-optimal Pareto-front. To obtain that diversity,
the exploitation procedure, used in evolutionary approaches, disregards
low and keeps high fitness solutions found so far while exploration
procedures combine selected parent solutions in order to make (possibly
better) new child solutions (Črepinšek et al., 2013). Although reaching
an optimal balance between these two procedures is a challenging issue,
however, it can be managed by some proper control parameter settings,
such as probabilistic execution. When the probability of calling the
exploitation procedure is very high, a majority of good solutions survive
and the search space is remained unexplored. On the other hand, when
the probability of calling exploration procedures is high, most of the
objective space is explored, but the probability of neglecting a majority
of good solutions is relatively high.

4.2.1. Exploitation
The traditional NSGA-II, to increase the quality of solutions surviving

in each generation, uses the simple tournament selection. We again ap-
ply a new multi-objective constrained tournament selection procedure.
It receives two completely random solutions, chosen from the parent
population, say 𝜑1 and 𝜑2, as inputs. Then, it selects 𝜑1 if it is better in, at
least, one objective and not worse in the others compared to 𝜑2. In equal
situation, one that has lower total electricity distribution loss is chosen.

4.2.2. Exploration
The following presents two ‘‘linear crossover’’ and ‘‘exchange muta-

tion’’ procedures proposed to stabilize the necessary diversity.

Linear Crossover: The tournament selection procedure delivers two
solutions say 𝜑1 and 𝜑1 to the linear crossover procedure This delivery
is performed with the probability of 𝑝𝑐 ∈ [0, 1]. The crossover procedure
chooses a ‘‘random’’ time interval say 𝜏 ∈ {1, 2,… , 𝑇 }. Then, it produces
two child solutions named 𝜎1 and 𝜎2, as follows:

𝜎1 =

{ 𝜏
⋃

𝑡=1
C𝑡𝜑1

}

∪

{ 𝑇
⋃

𝑡=𝜏+1
C𝑡𝜑2

}

,

𝜎2 =

{ 𝜏
⋃

𝑡=1
C𝑡𝜑2

}

∪

{ 𝑇
⋃

𝑡=𝜏+1
C𝑡𝜑1

}

.

(16)

Eventually, it finds the Pareto-fronts of these four solutions (𝜑1,
𝜑2, 𝜎1, and 𝜎2). Here we apply a greedy method. If there are only
two solutions in the first Pareto-front, it exports them as the outputs.
Otherwise, if there are more than two solutions in the first Pareto-front,
it calculates their crowding distance value and exports the solutions with
the two highest crowding distance values accordingly. Finally, if there
is only one solution in the first Pareto-front, it will be one of the output
solutions. The same procedure is applied to the second Pareto-front to
obtain the other solution.

Exchange Mutation: Mutation is an evolutionary operator used to
preserve variety from one solution to the other solution, where each
solution component may change entirely from its previous version. The
exchange mutation procedure is applied to each output (child solution)
of the linear crossover with the probability of 𝑝𝑚 ∈ [0, 1]. This procedure
chooses two random buyers, say 𝑏𝑖,𝑘 and 𝑏𝑖′ ,𝑘′ , and two random sellers,
say 𝑠𝑗,𝑔 and 𝑠𝑗′ ,𝑔′ . Here, we apply a greedy method, where it sorts peer-to-
peer Euclidean distances of these four agents. Then, the highest amount
of electric energy transferred between them is assigned to agent with
the lowest distance and so on.

Indeed, the modifications done by exploration procedures may pro-
duce infeasible child solutions. Therefore, there should be an effective
refiner to handle the framework constraints and make the solutions
feasible.

4.3. Constraint handling

An effective constraint handling procedure is a key element in
designing competitive evolutionary algorithms to solve multi-objective
optimization problems (Deb, 2000). As Algorithm 5 describes, this
paper proposes a greedy constraint handling procedure to refine
solutions that need a refinement. This helps the power matching
framework converge to a near-optimal Pareto-front while running the
power matching algorithm. Let us consider Q′ =

{

𝜑′
1, 𝜑

′
2,… , 𝜑′

𝑄

}

is the set of children’s population. It includes 𝑄 solutions as parent
population Q has. The following clarifies each probable problems,
shown in Algorithm 5, accompanied with their possible algorithmic
solution.
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Algorithm 5: Constraint Handling
1 for 𝑡 = 1 𝑡𝑜 𝑇 do
2 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0;
3 while 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0 do
4 for 𝑘 = 1 𝑡𝑜 𝐾 do
5 for 𝑖 = 1 𝑡𝑜 𝑁𝑘 do
6 if 𝑑𝑏𝑖,𝑘 > 0 then

// Unsatisfied Buyer
7 Run Algorithm 6;
8 else
9 if 𝑑𝑏𝑖,𝑘 < 0 then

// Overbought Buyer
10 Run Algorithm 7;
11 end
12 end
13 end
14 for 𝑗 = 1 𝑡𝑜 𝑀𝑘 do

// Oversold Seller
15 Run Algorithm 8;
16 end

// Exceeding the EDT
17 Run Algorithm 9;
18 end
19 if

{

∃𝑏 ∈ 𝐹𝐵|𝑑𝑡𝑏 ≠ 0
}

∧
{

∃𝑠 ∈ 𝐹𝑆 |𝑞𝑡𝑏 < 0
}

∧
{

∃𝑓𝑘 ∈ 𝐹 |EDT 𝑡
𝑘 < 0

}

then
20 Feasibility=1;
21 end
22 end
23 end

4.3.1. Unsatisfied buyer
Algorithm 6 describes how the constraint handling procedure meets

unsatisfied buyers’ demands. Each unsatisfied buyer should try to
buy the remaining load demand using the Inside-Feeder trading
method. Afterwards, sellers, who are connected to other feeders, will
suggest their remaining surplus energy. Finally, the power plant will
satisfy the unsatisfied buyers’ demand.

4.3.2. Overbought buyer
Algorithm 7 shows how the overbought amount of energy is de-

ducted from contracts. For each overbought buyer, first, the total
electricity purchased from the power plant is reduced. Then, the same
process is performed for negotiations done with sellers connected to
different feeders. Finally, it is investigated in contracts made by sellers
connected to the same feeder as the overbought buyer is.

4.3.3. Oversold seller
Algorithm 8 describes how the limited surplus energy of oversold

sellers is respected. The oversold amount of each seller will be decreased
from those contracts, which include Feeder-to-Feeder transfers.
Then, the same process will be checked for the contracts including
Inside-Feeder transfers.

4.3.4. Exceeding the EDT
Algorithm 9 ensures that, during any time interval, the grid will not

overload. If the total electric power transmitted through a feeder exceeds
the corresponding 𝐸𝐷𝑇 , the amount of excessive energy will be de-
ducted from the Customer-to-PowerPlant transactions. Then, the
same process will be applied to Feeder-to-Feeder and Inside-
Feeder exchanges, until satisfying the corresponding 𝐸𝐷𝑇 .

Algorithm 6: Constraint Handling: Unsatisfied Buyer
// Inside-Feeder Trading Method

1 Randomly select a permutation of sellers say
(

𝑠1,𝑘, 𝑠2,𝑘,… , 𝑠𝑀𝑘 ,𝑘

)

;
2 𝑗 = 1;
3 while

(

𝑞𝑡𝑠𝑗,𝑘 > 0
)

∧
(

𝑗 ≤𝑀𝑘
)

do
4 Run Algorithm 1;
5 𝑗 = 𝑗 + 1;
6 end
// Feeder-to-Feeder Trading Method

7 if 𝑑𝑡𝑏𝑖,𝑘 > 0 then
8 Select a random permutation of feeders, say

(

𝑓1, 𝑓2,… , 𝑓𝑘−1, 𝑓𝑘+1,… , 𝑓𝐾
)

;
9 𝑐 = 1;
10 while 𝑐 ≤ (𝐾 − 1) do
11 Sort Euclidean distances among buyer 𝑏𝑖,𝑘 and sellers,

connected to feeder 𝑓𝑐 , ascendingly;
12 ℎ = 1;
13 while

(

𝑞𝑡𝑠ℎ,𝑐 > 0
)

∧
(

ℎ ≤𝑀𝑐
)

do
14 Run Algorithm 1;
15 ℎ = ℎ + 1;
16 end
17 𝑐 = 𝑐 + 1;
18 end
19 end

// Customer-to-PowerPlant Trading Method
20 if 𝑑𝑡𝑏𝑖,𝑘 > 0 then
21 Run Algorithm 4;
22 end

5. Simulation setup and analysis

This section first provides the default simulation setup and then,
analyzes the simulation results.

5.1. Simulation setup

We create four environmental scenarios ES1∼4, including different
sets of customers, as Table 2 expresses. The reason for choosing such sce-
narios is to analyze the impact of ‘‘customer participation percentage’’
on the framework. We believe real cases will fall in one of these practical
assumptions. To make scenarios more realistic, it is considered that in
each feeder, a subset of customers are willing to utilize such framework.
In ES1, the idea is to analyze how having insufficient number of sellers
influences the buyers. In contrast, in ES2, the same analyze is applied
when we have a very low buyers’ participation percentage. Afterwards,
ES3 and ES4 are designed to investigate how the disparate distribution
of customers’ location affects the grid’s balance over time.

Table 3 lists the default values of simulation parameters. Each
customer’s location in the grid is uniformly randomly assigned, within
the range of 2.5 km2. The operable range of electricity price offers are
captured from the electricity prices in New York City (Anon, 2018). We
assume sellers own a set of solar panels to first, satisfy their demands
and then, sell the surplus energy (Hummon et al., 2012). Electricity
consumption patterns of customers are captured from Englert et al.
(2013). The simulations are spanned over only one day, due to the
daily basis of patterns. To ensure buyers of having their demands fully
satisfied at each time interval, we assume 𝐸𝐷𝑇 𝑡𝑘 = 𝑃𝐴𝐶 𝑡𝑘, where 𝑃𝐴𝐶 𝑡𝑘
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Algorithm 7: Constraint Handling: Overbought Buyer
// Customer-to-PowerPlant transfer

1 if 𝑥𝑡𝑏𝑖,𝑔 𝜉 > 0 then

2 if 𝑥𝑡𝑏𝑖,𝑔 𝜉 ≥
|

|

|

𝑑𝑡𝑏𝑖,𝑘
|

|

|

then

3 𝑥𝑡
𝑏𝑖,𝑔 𝜉

= 𝑥𝑡
𝑏𝑖,𝑔 𝜉

− |

|

|

𝑑𝑡𝑏𝑖,𝑘
|

|

|

;
4 𝑑𝑡𝑏𝑖,𝑘 = 0;
5 else
6 𝑑𝑡𝑏𝑖,𝑘 = 𝑑𝑡𝑏𝑖,𝑘 + 𝑥

𝑡
𝑏𝑖,𝑔 𝜉

;
7 𝑥𝑡

𝑏𝑖,𝑔 𝜉
= 0;

8 end
9 end
// Feeder-to-Feeder transfer

10 if 𝑑𝑏𝑖,𝑘 < 0 then
11 Calculate the electricity distribution loss of applicable

Feeder-to-Feeder transfers and sort the corresponding
contracts descendingly, say 𝜒 =

(

𝑥𝑡𝑏𝑖,𝑘 𝑠𝑗,𝑔 ,… , 𝑥𝑡𝑏𝑖,𝑘 𝑠𝑗′ ,𝑔′ ,…
)

,
where 𝑘 ≠

{

𝑔, 𝑔′
}

;
12 𝑗 = 1;
13 while

(

𝑑𝑏𝑖,𝑘 < 0
)

∧ (𝑗 ≤ |𝜒|) do
14 if 𝜒(𝑗) ≥ |

|

|

𝑑𝑡𝑏𝑖,𝑘
|

|

|

then
15 𝜒(𝑗) = 𝜒(𝑗) − |

|

|

𝑑𝑡𝑏𝑖,𝑘
|

|

|

;
16 𝑑𝑡𝑏𝑖,𝑘 = 0;
17 else
18 𝑑𝑡𝑏𝑖,𝑘 = 𝑑𝑡𝑏𝑖,𝑘 +𝜒(𝑗);
19 𝜒(𝑗) = 0;
20 end
21 𝑗 = 𝑗 + 1 ;
22 end
23 end

// Inside-Feeder transfer
24 if 𝑑𝑏𝑖,𝑘 < 0 then
25 Calculate the electricity distribution loss of applicable

Inside-Feeder transfers and sort the corresponding
contracts descendingly, say 𝜒 =

(

𝑥𝑡𝑏𝑖,𝑘 𝑠1,𝑘 , 𝑥
𝑡
𝑏𝑖,𝑘 𝑠2,𝑘

,…
)

;
26 𝑐 = 1;
27 while

(

𝑑𝑏𝑖,𝑘 < 0
)

∧ (𝑐 ≤ |𝜒|) do
28 if 𝜒(𝑐) ≥ |

|

|

𝑑𝑡𝑏𝑖,𝑘
|

|

|

then
29 𝜒(𝑐) = 𝜒(𝑐) − |

|

|

𝑑𝑡𝑏𝑖,𝑘
|

|

|

;
30 𝑑𝑡𝑏𝑖,𝑘 = 0;
31 else
32 𝑑𝑡𝑏𝑖,𝑘 = 𝑑𝑡𝑏𝑖,𝑘 +𝜒(𝑐);
33 𝜒(𝑐) = 0;
34 end
35 𝑐 = 𝑐 + 1 ;
36 end
37 end

is the peak aggregated consumption of customers. For more informa-
tion regarding utilizing multi-objective load scheduling approaches on
demand response programs, i.e., where 𝐸𝐷𝑇 𝑡𝑘 < 𝑃𝐴𝐶 𝑡𝑘, the reader is
referred to Azar and Jacobsen (2016). We simulate the framework with
Matlab in a personal computer with a single Intel Core i7-2.0 GHz CPU
and 6 GB memory. Since the proposed evolutionary multi-objective
algorithm is stochastic in nature, 50 trials have been performed for each
simulation case. The results have been averaged across the trials.

Algorithm 8: Constraint Handling: Oversold Seller
// Feeder-to-Feeder transfer

1 Calculate the electricity distribution loss of applicable
Feeder-to-Feeder transfers and sort the corresponding
contracts descendingly, say 𝜒 =

(

𝑥𝑡𝑏𝑖,𝑔 𝑠𝑗,𝑘 ,… , 𝑥𝑡𝑏𝑖′ ,𝑔′ 𝑠𝑗,𝑘 ,…
)

, where
𝑘 ≠

{

𝑔, 𝑔′
}

;
2 𝑐 = 1;
3 while

(

𝑞𝑠𝑗,𝑘 < 0
)

∧ (𝑐 ≤ |𝜒|) do
4 if 𝜒(𝑐) ≥ |

|

|

𝑞𝑡𝑠𝑗,𝑘
|

|

|

then
5 𝜒(𝑐) = 𝜒(𝑐) − |

|

|

𝑞𝑡𝑠𝑗,𝑘
|

|

|

;
6 𝑞𝑡𝑠𝑗,𝑘 = 0;
7 else
8 𝑞𝑡𝑠𝑗,𝑘 = 𝑞𝑡𝑠𝑗,𝑘 +𝜒(𝑐);
9 𝜒(𝑐) = 0;
10 end
11 𝑐 = 𝑐 + 1 ;
12 end

// Inside-Feeder transfer
13 if 𝑞𝑠𝑗,𝑘 < 0 then
14 Calculate the electricity distribution loss of applicable

Inside-Feeder transfers and sort the corresponding
contracts descendingly, say 𝜒 =

(

𝑥𝑡𝑏1,𝑘 𝑠𝑗,𝑘 , 𝑥
𝑡
𝑏2,𝑘 𝑠2,𝑘

,…
)

;
15 𝑐 = 1;
16 while

(

𝑑𝑡𝑏𝑖,𝑘 < 0
)

∧ (𝑐 ≤ |𝜒|) do
17 if 𝜒(𝑐) ≥ |

|

|

𝑞𝑡𝑠𝑗,𝑘
|

|

|

then
18 𝜒(𝑐) = 𝜒(𝑐) − |

|

|

𝑞𝑡𝑠𝑗,𝑘
|

|

|

;
19 𝑞𝑡𝑠𝑗,𝑘 = 0;
20 else
21 𝑞𝑡𝑠𝑗,𝑘 = 𝑞𝑡𝑠𝑗,𝑘 +𝜒(𝑐);
22 𝜒(𝑐) = 0;
23 end
24 𝑐 = 𝑐 + 1 ;
25 end
26 end

5.2. Simulation results

The following analyzes the effectiveness and significance of the
proposed framework according to different criteria both quantitatively
and qualitatively.

5.2.1. Fitness diagrams and customers’ social welfare
Fig. 7 demonstrates the fitness diagram of each environmental

scenario in the objective space. Each diagram presents the Pareto-front
obtained from the last generation of RNSGA-II. Numbers, shown on
vertical and horizontal axes, are fitness values of all buyers and sellers
corresponding to each solution resting on the Pareto-front. Their near
constant slopes are due to the fixed but time-dependent electricity mar-
ket’s price, which the two-stage price updating mechanism sets to use in
both objectives over time (see Eq. (9)). It is worthwhile emphasizing that
by changing the pricing policy and objective functions accordingly, the
fitness diagrams can change to non-linear vectors. Furthermore, three
different points, named A, B, and C, are marked on each diagram. The
solution, corresponding to point A, indicates that the market operator
favors buyers more than sellers. In this situation, their overall fitness
decreases simultaneously, as expected. Conversely, both objectives are
maximized, when the market operator favors sellers (i.e., point B).
Finally, point C indicates the situation, where the market operator pays
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Algorithm 9: Constraint Handling: Exceeding the EDT
// Customer-to-PowerPlant transfer

1 Calculate the electricity distribution loss of applicable
Customer-to-PowerPlant transfers and sort the
corresponding contracts descendingly, say 𝜒 =

(

𝑥𝑡
𝑏1,𝑘 𝜉

, 𝑥𝑡𝑏2,𝑘 𝜉 ,…
)

;
2 𝑗 = 1;
3 while

(

EDT 𝑡
𝑘 < 0

)

∧ (𝑗 ≤ |𝜒|) do
4 if 𝜒(𝑗) ≥ |

|

EDT 𝑡
𝑘
|

|

then
5 𝜒(𝑗) = 𝜒(𝑗) − |

|

EDT 𝑡
𝑘
|

|

;
6 EDT 𝑡

𝑘 = 0;
7 else
8 EDT 𝑡

𝑘 = EDT 𝑡
𝑘 + 𝜒(𝑗);

9 𝜒(𝑗) = 0;
10 end
11 𝑗 = 𝑗 + 1 ;
12 end

// Feeder-to-Feeder transfer
13 if EDT 𝑡

𝑘 < 0 then
14 Calculate the electricity distribution loss of applicable

Feeder-to-Feeder transfers and sort the corresponding
contracts descendingly, say 𝜒 =

(

𝑥𝑡𝑏1,𝑘 𝑠1,𝑔 ,… , 𝑥𝑡𝑏1,𝑘 𝑠1,𝑔′′ ,…
)

,
where 𝑘 ≠

{

𝑔, 𝑔′
}

;
15 𝑐 = 1;
16 while

(

EDT 𝑡
𝑘 < 0

)

∧ (𝑐 ≤ |𝜒|) do
17 if 𝜒(𝑐) ≥ |

|

EDT 𝑡
𝑘
|

|

then
18 𝜒(𝑐) = 𝜒(𝑐) − |

|

EDT 𝑡
𝑘
|

|

;
19 EDT 𝑡

𝑘 = 0;
20 else
21 EDT 𝑡

𝑘 = EDT 𝑡
𝑘 + 𝜒(𝑐);

22 𝜒(𝑐) = 0;
23 end
24 𝑐 = 𝑐 + 1 ;
25 end
26 end

// Inside-Feeder transfer
27 if EDT 𝑡

𝑘 < 0 then
28 Calculate the electricity distribution loss of applicable

Inside-Feeder transfers and sort the corresponding
contracts descendingly, say 𝜒 =

(

𝑥𝑡𝑏1,𝑘 𝑠1,𝑘 , 𝑥
𝑡
𝑏2,𝑘 𝑠2,𝑘

,…
)

;
29 𝑐 = 1;
30 while

(

EDT 𝑡
𝑘 < 0

)

∧ (𝑐 ≤ |𝜒|) do
31 if 𝜒(𝑐) ≥ |

|

EDT 𝑡
𝑘
|

|

then
32 𝜒(𝑐) = 𝜒(𝑐) − |

|

EDT 𝑡
𝑘
|

|

;
33 EDT 𝑡

𝑘 = 0;
34 else
35 EDT 𝑡

𝑘 = EDT 𝑡
𝑘 + 𝜒(𝑐);

36 𝜒(𝑐) = 0;
37 end
38 𝑐 = 𝑐 + 1 ;
39 end
40 end

a near-equal attention to them. Table 4 shows average values of buyers’
power purchase cost and sellers’ power selling benefit with respect to
these three specific points in each environmental scenario.

Fig. 7(a) illustrates that ∑𝐾
𝑘=1

∑𝑁𝑘
𝑖=1𝑑

𝑡
𝑏𝑖,𝑘

≫
∑𝐾
𝑘=1

∑𝑀𝑔
𝑗=1
𝑞𝑡𝑠𝑗,𝑔 . Thus,

almost all buyers have to satisfy their demands through the power plant.
Then, not only are corresponding contracts expensive due to the higher
electricity price, but also, they have a higher electricity distribution loss.
With respect to the random permutation, described in Section 4.1.1,
the Pareto-front includes ten distinct power matching solutions. Since

Table 2
Environmental scenarios.

𝑓1 𝑓2 𝑓3 𝑓4

ES1
|B| = 25 → 𝑁1 = 4 𝑁2 = 6 𝑁3 = 7 𝑁4 = 8
|S| = 1 → 𝑀1 = 0 𝑀2 = 0 𝑀3 = 0 𝑀4 = 1

ES2
|B| = 1 → 𝑁1 = 0 𝑁2 = 1 𝑁3 = 0 𝑁4 = 0
|S| = 25 → 𝑀1 = 10 𝑀2 = 2 𝑀3 = 1 𝑀4 = 12

ES3
|B| = 40 → 𝑁1 = 15 𝑁2 = 5 𝑁3 = 12 𝑁4 = 8
|S| = 25 → 𝑀1 = 4 𝑀2 = 9 𝑀3 = 11 𝑀4 = 1

ES4
|B| = 25 → 𝑁1 = 16 𝑁2 = 4 𝑁3 = 0 𝑁4 = 5
|S| = 40 → 𝑀1 = 3 𝑀2 = 6 𝑀3 = 9 𝑀4 = 22

Table 3
Default values of simulation parameters.

Parameter Value Parameter Value

Area 10 × 10 km2 𝐾 4
𝑝𝑙 0.03 ($/kWh) 𝑝𝑢 0.1($/kWh)
𝑝𝑚 2 ($/kWh) ELF 𝑓 0.05
ELF 𝜉 0.15 𝑑𝑡 [1, 9]* (kWh)
𝑞𝑡 [2, 13]* (kWh) EDT 𝑡

𝑘 PAC 𝑡
𝑘

𝑇 24 𝑄 100
𝑊 100 𝑝𝑐 0.8
𝑝𝑚 0.2 𝛾 (0, 1)*

𝛿 (0, 1)* 𝑝𝑏1
(

𝑝𝑙 , 𝑝𝑢
)*

𝑝𝑠1
(

𝑝𝑙 , 𝑝𝑢
)*

* The value is uniformly randomly chosen.

Table 4
Average values of buyers’ purchasing cost and sellers’ selling benefit in a 24 h
period.

Point A Point B Point C

ES1
B → $4.75 $5.04 $4.90
S → $4.72 $7.79 $6.25

ES2
B → $2.67 $2.71 $2.69
S → $2.83 $2.87 $2.85

ES3
B → $4.31 $4.35 $4.33
S → $4.46 $4.52 $4.49

ES4
B → $3.08 $3.11 $3.09
S → $3.25 $3.35 $3.30

there is only one seller in ES1, the surplus energy is completely sold.
The seller’s daily benefit range, i.e., $[4.72,7.79], in each solution, is
obtained by contracting with different buyers. When a buyer makes an
Inside-Feeder contract with a seller, the benefit would be relatively
high compared to a Feeder-to-Feeder contract due to the lower
electricity distribution loss. From the buyers’ perspective, the buyer
succeeds to satisfy all or a major part of the demand from the seller,
then, the electricity cost will be lower compared to the situation, where
the buyer has to satisfy all the demand through the power plant. Fig. 7(b)
demonstrate the fitness diagram, when there is only one buyer and 25
sellers. Obviously, ∑𝐾

𝑘=1
∑𝑁𝑘
𝑖=1𝑑

𝑡
𝑏𝑖,𝑘

≪
∑𝐾
𝑘=1

∑𝑀𝑔
𝑗=1
𝑞𝑡𝑠𝑗,𝑔 and thus, the buyer

is able to satisfy his/her demands through a subset of sellers. Solutions
on the Pareto-front emphasizes that the buyer, by just making Inside-
Feeder contracts with two sellers, is successful in satisfying the load
demand. These solutions only differ in the permutation order of their
sellers and the surplus energy volume sellers can provide. Therefore, as
Table 3 shows, the cost range for buyers is very narrow. Indeed, only
two sellers, located in feeder 𝑓2, are able to increase their social welfare
while others cannot even sell anything. Hence, their fitness range is also
narrow. In this environmental scenario, there is no Customer-to-
PowerPlant transaction.

Figs. 7(c) and 7(d) are almost the same. The main difference is that
the probability of not having sufficient surplus energy in ES3 is higher
than in ES4, i.e., ∑𝐾

𝑘=1
∑𝑁𝑘
𝑖=1𝑑

𝑡
𝑏𝑖,𝑘

>
∑𝐾
𝑘=1

∑𝑀𝑔
𝑗=1
𝑞𝑡𝑠𝑗,𝑔 . Therefore, the density

in the upper half of the fitness diagram, shown in Fig. 7(c), is high. The
reason is that sellers perhaps will completely sell their surplus energy.
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(a) ES1. (b) ES2.

(c) ES3. (d) ES4.

Fig. 7. Fitness diagrams of environmental scenarios in the objective space.

Fig. 8. Comparison of fitness diagrams of the proposed RNSGA-II, NSGA-II,
NSGA-III, and SPEA2.

On the contrary, Fig. 7(d) includes an almost uniformly distributed
solutions. Here, since probably ∑𝐾

𝑘=1
∑𝑁𝑘
𝑖=1𝑑

𝑡
𝑏𝑖,𝑘

<
∑𝐾
𝑘=1

∑𝑀𝑔
𝑗=1
𝑞𝑡𝑠𝑗,𝑔 , then,

all buyers are satisfied through available sellers. On one hand, since
|S| in ES3 is lower than |S| in ES4, the probability of finding the
optimal permutation of sellers in ES3 is high. Therefore, buyers can
comparatively make cost-effective contracts. For the same reason, sellers
in ES3 benefits relatively more than sellers in ES4.

This part compares the proposed RNSGA-II with the traditional
NSGA-II (Deb et al., 2000), Reference-Point-Based NSGA-II referred as

Table 5
Average values of buyers’ purchasing cost and sellers’ selling benefit in a 24 h
period achieved in different algorithms.

Point A Point B Point C

RNSGA-II B → $4.31 $4.35 $4.33
S → $4.46 $4.52 $4.49

NSGA-II B → $4.33 $4.75 $4.61
S → $4.47 $4.50 $4.49

NSGA-III B → $4.28 $5.49 $4.56
S → $4.43 $4.55 $4.50

SPEA2 B → $4.30 $4.32 $4.31
S → $4.41 $4.47 $4.52

NSGA-III (Deb and Jain, 2014), and Improved Strength Pareto Evo-
lutionary Algorithm (SPEA2) (Zitzler et al., 2001). The main differ-
ence between NSGA-II and NSGA-III is the maintenance of diversity
among population members. The former utilizes the crowding distance
operator while the latter supplies and adaptively updates a number
of well-spread pre-defined reference points to ensure the diversity in
obtained solutions. We use a systematic approach that places points on
a normalized hyper-plane, which is equally inclined to two-objective
axes and has an intercept of one on each axis. We consider three
divisions, where four reference points are equally spread out along each
objective.

Fig. 8 shows this comparison in the objective space considering
ES3 and default setup listed in Table 3. Table 5 shows average val-
ues of buyers’ power purchase cost and sellers’ power selling benefit
achieved in different algorithms mentioned above. Points A, B, and
C are selected according to the procedure described earlier. NSGA-
II and SPEA2 achieve a narrow diversity while NSGA-III hosts more
diverse solutions. These diagrams show the first Pareto-front obtained
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Table 6
Average electricity cost of buyers and benefit of sellers when the number of customers increases.

Number of buyers

10 20 30 40 50

Number of sellers

10 $(11.77,11.84,11.81)
$(11.22,11.28,11.25)

$(11.64,11.69,11.66)
$(22.42,22.52,22.46)

$(9.75,9.60,9.58)
$(27.83,27.93,27.88)

$(7.69,7.72,7.71)
$(29.95,30.04,30.01)

$(6.58,6.60,6.59)
$(30.02,32.14,32.08)

20 $(6.00,6.07,6.03)
$(2.86,2.89,2.87)

$(5.75,5.81,5.78)
$(5.48,5.45,5.05)

$(6.07,6.10,6.09)
$(8.70,8.74,8.72)

$(5.84,5.86,5.85)
$(11.25,11.27,11.26)

$(5.18,5.20,5.19)
$(6.71,6.73,6.71)

30 $(3.90,4.01,3.96)
$(1.23,1.27,1.25)

$(4.00,4.06,4.03)
$(2.54,2.58,2.56)

$(4.02,4.06,4.04)
$(3.83,3.87,3.85)

$(3.98,4.00,3.99)
$(5.05,5.08,5.07)

$(4.19,4.21,4.20)
$(6.71,6.73,6.71)

40 $(2.99,3.05,3.03)
$(0.71,0.72,0.72)

$(2.93,2.95,2.94)
$(1.39,1.40,1.40)

$(3.00,3.03,3.01)
$(2.14,2.16,2.15)

$(2.97,3.00,2.98)
$(2.83,2.85,2.84)

$(3.03,3.04,3.04)
$(3.61,3.62,3.62)

50 $(2.43,2.47,2.45)
$(0.46,0.47,0.46)

$(2.38,2.42,2.40)
$(0.90,0.92,0.91)

$(2.41,2.43,2.37)
$(1.38,1.39,1.38)

$(2.36,2.38,2.37)
$(1.79,1.81,1.80)

$(2.35,2.36,2.36)
$(2.24,2.25,2.25)

in the last generation. Pareto-fronts of RNSGA-II and NSGA-II include
95 unique solutions. However, RNSGA-II provides the market operator
with more flexibility in selecting the final solution. Fitness diagram of
the NSGA-III hosts 52 unique solutions. This algorithm behaves slightly
better in providing a wider range of solutions. Fitness diagram of the
SPEA2 possesses 35 unique solutions. The difference in the gradient
of these diagrams is due to the nature of exploitation and exploration
procedures. However, RNSGA-II results in having more solutions, which
are in almost near-equal benefit of both buyers and sellers. NSGA-II and
NSGA-III provides more solutions, in which sellers’ social welfare is not
maximized. SPEA2 behaves the reverse and buyers’ social welfare are
almost equal in that 35 solutions.

5.2.2. Stability analysis of RNSGA-II
This part analyzes the stability of the RNSGA-II according to the

correlation between ‘‘customers’ social welfare’’ and ‘‘number of cus-
tomers.’’ Table 6 summarizes the average buyers’ electricity purchase
cost and sellers’ benefit when the number of customers increases. Each
cell includes a fraction $(𝑥,𝑦,𝑧)

$(𝑥′ ,𝑦′ ,𝑧′) . The numerator (denominator) involves
the average cost (benefit) of buyers (sellers) corresponding to points
A, B, and C, respectively. When the number of buyers is constant, as
the number of sellers increases, both values decrease. On one hand,
buyers have more Customer-Customer trading opportunities, which
results in decreasing the amount of Customer-to-PowerPlant
transactions. On the other hand, sellers, to encourage buyers to have
a trading with them, have to offer lower electricity prices. This results
in obtaining lower cost values on average. However, as the number of
buyers increases, the probability of finding a buyer to sell the surplus
energy to him/her also increases. This maximizes the sellers’ benefit.
For buyers, the best situation happens when |B| = 50 and |S| = 50
while for sellers it is |B| = 50 and |S| = 10. As the former, with very
high probability, the buyers are satisfied with Customer-Customer
contracts, particularly with the Inside-Feeder trading method. They have
more options in making contracts to minimize their electricity cost. As
the latter, sellers attempt to find buyers who offer high electricity prices.
Since buyers have to satisfy their demand, then, the probability of selling
all or, at least, the majority of the total surplus energy is high.

Table 7 analyzes the stability of the evolutionary algorithm accord-
ing to the correlation between the ‘‘number of generations’’ and the
‘‘population size.’’ Let

𝑆𝐸𝐹 P =

√

√

√

√

(

1
|P| − 1

)

×
|P|
∑

𝑎=1

(
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)
2
,

𝜓𝑎 = min𝑎≠𝑎
{

|

|

|

𝐺
(

𝜑𝑎
)

− 𝐺
(

𝜑𝑎′
)

|

|

|

+ |

|

|

𝐻
(

𝜑𝑎
)

−𝐻
(

𝜑𝑎′
)

|

|

|

}

,
{

𝑎, 𝑎′
}

∈ {1, 2,… , |P|} ,

(17)

where 𝑆𝐸𝐹 P is the variance of the distance between each solution 𝜑𝑎
in the Pareto-front P and its closest neighbor 𝜑𝑎′ in the objective space
obtained in the last generation. 𝜓 is the mean of all 𝜓𝑎. 𝐺 and 𝐻 are the
objective functions of the market operator with input 𝜑 (see Eq. (6)).
A value of zero for 𝑆𝐸𝐹 P expresses that all solutions, resting on P, are
equidistantly spaced. Furthermore, (|P|) shows the number of solutions
on the Pareto-front P and CT is the computation time of the algorithm.

Each cell in Table 7 includes a fraction 𝑥
𝑦 . 𝑥 equals the value of the

corresponding criterion when the number of generation increases while

Table 7
Stability analysis of the algorithm based on three efficiency criteria when the
number of generations and population size increase.
𝑄 = 100 SEFP |P| CT (s) 𝑊 = 100

𝑊 = 50 0.14
0.12

75
35

549.96
637.82

𝑄 = 50

𝑊 = 100 0.12
0.12

69
73

9.57
13.51

𝑄 = 100

𝑊 = 150 0.12
0.08

69
73

13.04
20.15

𝑄 = 150

𝑊 = 200 0.07
0.05

64
125

17.74
25.44

𝑄 = 200

𝑊 = 250 0.04
0.02

64
196

23.34
30.04

𝑄 = 250

𝑊 = 300 0.04
0.02

63
254

29.54
38.01

𝑄 = 300

Table 8
Stability analysis of the algorithm based on three efficiency criteria when
crossover and mutation probabilities increase.

{𝑄,𝑊 } = 100 SEFP SS (%) CT-CH (s) {𝑄,𝑊 } = 100
𝑝𝑚 = 0.2 𝑝𝑐 = 0.8

𝑝𝑐 = 0.2 0.14
0.12

15
7

251.98
116.77

𝑝𝑚 = 0.2

𝑝𝑐 = 0.4 0.05
0.12

16
8

427.98
196.75

𝑝𝑚 = 0.4

𝑝𝑐 = 0.6 0.08
0.13

19
10

779.11
348.67

𝑝𝑚 = 0.6

𝑝𝑐 = 0.8 0.12
0.14

22
12

976.02
441.22

𝑝𝑚 = 0.8

𝑝𝑐 = 1.0 0.14
0.14

23
12

1227.64
512.12

𝑝𝑚 = 1.0

the population size is constant, i.e., 𝑄 = 100. 𝑦 refers to the value of the
corresponding criterion when the population size increases while the
number of generations is constant, i.e., 𝑊 = 100. The environmental
scenario ES4 is also selected for this analysis.

When 𝑄 = 100, while we increase the number of generations, 𝑆𝐸𝐹 P
decreases. This shows the optimality of the algorithm since as we run
more, we spread the solutions on the Pareto-front more. However, |P|
decreases since the algorithm, in each generation, attempts to improve
solutions. Therefore, with respect to the dominance rule and also the
default setting mentioned in Table 3, the algorithm is interested in just
surviving dominant solutions. This helps the market operator choose
an effective solution since 𝑆𝐸𝐹 P also decreases, which proves the
sufficient dispersion. This makes a trade-off for the market operator
since the computation time of running the algorithm also increases.
When 𝑊 = 100, while we increase the population size, we enhance the
𝑆𝐸𝐹 P and increase the number of solutions resting on the Pareto-front
P, as expected. The same situation with CT is also applicable here.

Table 8 analyzes the algorithm when the probability of exploration
procedures varies independently. Here, SS refers to the average per-
centage of survival of an explored child solution in the Pareto-front
obtained in each generation. CT-CH is the average computation time
of the constraint handling (CH) procedure running in each generation.
Each cell includes a fraction 𝑥

𝑦 . 𝑥 equals the value of the corresponding
criterion, when the crossover probability increases while the mutation
probability is constant, i.e., 𝑝𝑚 = 0.2. 𝑦 refers to the value of the
corresponding criterion, when the mutation probability increases while
the crossover probability is constant, i.e., 𝑝𝑐 = 0.8. It should be
noted that the environmental scenario ES4 is selected for this analysis.
While we keep increasing the crossover probability, the greedy linear
crossover procedure produces good solutions since SS increases. This
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Table 9
Average electricity prices offered by customers and the market operator in each
environmental scenario.

Point A Point B Point C

ES1
B → $0.04 $0.07 $0.05
S → $0.07 $0.09 $0.08
MO → $1.81 $1.84 $1.83

ES2
B → $0.03 $0.04 $0.03
S → $0.03 $0.05 $0.04
MO → $0.03 $0.05 $0.04

ES3
B → $0.04 $0.05 $0.04
S → $0.06 $0.08 $0.06
MO → $0.03 $0.04 $0.04

ES4
B → $0.03 $0.04 $0.03
S → $0.05 $0.06 $0.05
MO → $0.04 $0.05 $0.05

increase requires calling the constraint handling procedure more as
CT-CH follows. These explanations are also applicable to the greedy
mutation procedure. However, high values of mutation implies that
the evolutionary search changes from a guided to a purely blind one.
By this change, the algorithm, in each generation, confronts no new
good solutions, since not only are these solutions not good enough, but
also they require more computation time in the constraint handling
step. Hence, its influence on the criteria compared to the crossover is
relatively negligible, as expected.

5.2.3. Effects of the two-stage price updating mechanism on RNSGA-II
Table 9 analyzes the performance of the two-stage price updating

mechanism and its effects on RNSGA-II. It elaborates average electricity
prices offered by customers (B and S) and the market price announced
by the market operator (MO). In ES1, as described before, since the main
party, in most of the contracts, is the power plant, therefore, the market
price is close to its offered electricity price. In ES2, since |B| ≪ |S|
and according to Eq. (9), buyers dominate the market, which results in
a lower market price. Sellers, to encourage buyers to make a contract
with them, have to offer a relatively lower electricity prices. Otherwise,
they are in charge of paying more for the energy storage. Results for
scenarios ES3 and ES4 are almost the same. Nevertheless, in the former,
buyers offer lower while sellers offer high electricity prices. The reason
is that buyers attempt to make Customer-Customer contracts, which
avoid them to pay more to the power plant while sellers provide high
electricity price offers since |B| > |S|. This also proves the reason that the
market operator announces the market price near the buyers’ average
electricity price offer. In the latter, the situation differs since |B| < |S|.
Both buyers and sellers offer relatively lower electricity prices, which
lead the market operator to provide the market price near the sellers’
average electricity price offer.

According to Section 3.3, the malleability rate plays a key role in the
two-stage price updating mechanism. Its influence, as Table 9 reflects,
differs in each environmental scenario. For instance, in ES1, let us
suppose 𝑝𝑏1 = 𝑝𝑙, 𝑝𝑠1 = 𝑝𝑢, and {𝛾, 𝛿} = 0.001. In this situation, buyers
will not save more since they have to satisfy most of their demands
through the power plant, which provides constant and high electricity
price. Since the single seller’s surplus energy is sold completely, its
benefit is maximized. In ES2, let us assume

{

𝑝𝑏1, 𝑝𝑠1
}

= 𝑝𝑙, 𝛾 = 0.001,
and 𝛿 = 0.999. As discussed in Section 3.3.2, 𝑝𝑑𝑡 ≅ 𝑝𝑏

𝑡
since |B|≪ |S| and

∑𝐾
𝑘=1

∑𝑁𝑘
𝑖=1𝑑

𝑡
𝑏𝑖,𝑘

. As a result, buyer’s purchasing cost and sellers’ selling
benefit will decrease together.

Fig. 9 displays price updating diagrams of customers and the market
operator at consecutive time intervals considering ES3. As Fig. 9(a)
demonstrates, on one hand, while a buyer 𝑏𝑖,𝑘 offers a lower electricity
price to start purchasing, according to Eq. (7), the malleability rate
enables that agent to offer 𝑝𝑏𝑡+1𝑖,𝑘 near 𝑝𝑏

𝑡
, at time interval 𝑡. On the other

hand, when another buyer 𝑏𝑖′ ,𝑘 offers an initial electricity price 𝑝𝑏1𝑖′ ,𝑘

near the average operable price, i.e., 𝑝𝑙+𝑝𝑢
2 = 0.03+0.1

2 = 0.065, there will
be no concrete reason to modify the next intervals’ prices rapidly.

Fig. 9(b) illustrates the sellers’ electricity price offers in a 24-hour.
Let us suppose two sellers 𝑠𝑗,𝑔 and 𝑠𝑗′ ,𝑔′ provide 𝑝𝑠1𝑗,𝑔 and 𝑝𝑠1𝑗′ ,𝑔′ close
to each other and higher than the average operable electricity price. If
their malleability rate values are different, statuses of their electricity
price updating will also be different. Considering another seller 𝑠𝑗′′ ,𝑔′′ ,
who offers 𝑝𝑠1𝑗′′ ,𝑔′′ ≅ 𝑝𝑙, he/she, to increase the probability of selling
the major part of the surplus energy, has to change it rapidly at future
time intervals. Now, the main question is: why sellers should change
their electricity price offers to get close to the weighted average of
electricity price offers? There are two reasons. First, if they offer ‘‘very
low’’ or ‘‘very high’’ electricity prices, with a high probability, there will
be no or, at least, some few buyers who are interested in having any
negotiation with them. Second, making offers as close to the weighted
average of electricity price offers as possible increases the possibility
of having more balanced and effective contracts. It also results in
optimizing the customers’ objectives.

Fig. 9(c) exhibits the electricity market’s fixed price calculated at
each time interval by Eq. (9). It can be seen that the market operator is
interested in keeping the electricity market in a stable condition. When
𝑝𝑑𝑡 is slightly higher than the average operable electricity price at each
time interval 𝑡, the market operator attempts to return it to the stable
condition. It helps the power matching framework not only facilitate the
electricity production and distribution, but also prevent the grid from
unwilling outages. Let
{

∃𝜏 ∈ {1, 2,… , 𝑇 } |
(

|

|

|

𝑝𝑏
𝜏
− 𝑝𝑑𝜏 ||

|

< 𝜖
)

∧
(

|

|

𝑝𝑠𝜏 − 𝑝𝑑𝜏 |
|

< 𝜖
)

}

,

0 ≤ 𝜖 ≤
((

𝑝𝑢 − 𝑝𝑙
)

× 𝑇
)

,
(18)

where 𝜏 is a time interval, at which the difference between weighted
averages of electricity price offers with the market’s price is less than
𝜖 ∈ R∗. The sooner 𝜏 is found, the quicker the market converges to
equilibrium. This is the market operator’s responsibility to adjust the 𝜖.

Fig. 10 displays the performance comparison between the proposed
two-stage price updating mechanism (referred as TSPUM in the leg-
end) with different approaches proposed in HomChaudhuri and Kumar
(2011) and Endo et al. (2016) (referred as Ref 1 and Ref 2 in the legend,
respectivley). We assume all buyers offer the lowest possible electricity
price, i.e., 𝑝𝑙 = 0.03, at the first time interval. At the same time, sellers
offer the highest possible electricity price, i.e., 𝑝𝑢 = 0.1. We assume
𝜖 = 0.5. According to simulation results, TSPUM reaches a acceptable
equilibrium at time interval 𝜏 = 18, where

|

|

|

|

𝑝𝑏
18

− 𝑝𝑑18
|

|

|

|

= 0.457 < 0.5

and |

|

|

𝑝𝑠18 − 𝑝𝑑18||
|

= 0.479 < 0.5. In Endo et al. (2016), 𝜏 = 21 while
in HomChaudhuri and Kumar (2011) no 𝜏 is found. Since |B| > |S|
in ES3, all sellers’ surplus energy is sold. They get benefit more since
there is no critical competition among themselves. Therefore, their
price offers are slightly higher than the average. In contrast, buyers
need to compete with each other to increase Customer-Customer
contracts. The pricing scheme proposed in Endo et al. (2016) behaves
similarly. However, buyers face higher electricity costs while sellers
receive lower benefits. In the mechanism developed in HomChaudhuri
and Kumar (2011), buyers’ criterion for buying electricity is only the
sellers’ location, not their price. Sellers’ strategy to update their price
offers depends on the number buyers currently bidding for it.

5.2.4. Computation time
Fig. 11 compares the computation time of RNSGA-II compared to

algorithms proposed in HomChaudhuri and Kumar (2011) and Endo et
al. (2016), when the number of customers increases (default setting).
We consider |B| = |S| in each case. The results have been averaged
across the 50 trials performed for each case. RNSGA-II, to return the
solution (i.e., the first Pareto-front obtained in the last generation), takes
a shorter time than the algorithm proposed in Endo et al. (2016). Also,
its computation complexity does not grow linearly, which confirms its
scalability. The algorithm averagely uses 35% of the CPU and 10% of
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(a) Buyers’ electricity price offers. (b) Sellers’ electricity price offers. (c) Fixed electricity market price.

Fig. 9. Price updating diagrams of customers and the market operator using the two-stage price updating mechanism based on ES3.

(a) Buyers’ average electricity price offers.

(b) Sellers’ average electricity price offers.

Fig. 10. The performance comparison between the proposed two-stage price
updating mechanism (referred as TSPUM in the legend) with other similar
approaches proposed in HomChaudhuri and Kumar (2011) and Endo et al.
(2016) shown as Ref 1 and Ref 2, respectively.

the memory. We apply the constraint handling procedure on all of the
child solutions. Although this yields to have more diversity in solutions,
nevertheless, it is known as the most computation intensive task in
RNSGA-II.

Fig. 11. Computation time of simulating RNSGA-II compared to algorithms
proposed in HomChaudhuri and Kumar (2011) and Endo et al. (2016) shown as
Ref 1 and Ref 2 in the legend, respectively.

6. Conclusions

This paper presented a market-driven framework formulating the
power matching problem into a multi-objective optimization context.
The framework attempted to match the buyers’ demands with the sellers’
produced power using an efficient power matching algorithm. A smart
grid environment was considered including some electrical feeders.
The negotiations among customers were done through three consecu-
tive methods named Inside-Feeder, Feeder-to-Feeder, and Customer-to-
PowerPlant. The last method worked as a backup to make the framework
more reliable. Minimizing buyers’ purchasing cost while maximizing
sellers’ benefit were the considered conflicting objectives.

A new two-stage iterative price updating mechanism was proposed
to update the electricity price offers. Buyers and sellers were offering
their desirable electricity purchasing prices to the market operator over
time. Then, the market operator was responsible for equilibrating these
prices and announcing an electricity market price to make negotiation
contracts. Finally, a multi-objective evolutionary algorithm was devel-
oped to make the contracts considering the minimization of electricity
distribution loss while respecting imposed grid stability constraints.

Simulation results discussed different environmental scenarios based
on a default setup. It was shown that RNSGA-II clearly achieved better
results compared to other algorithms in terms of customers’ social
welfare and diversity of solutions in the Pareto-front. Different stabil-
ity analysis parameters were provided to challenge the performance
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of RNSGA-II, when number of customers increased, or evolutionary
parameters were fluctuated. Then, the effects of the two-stage price
updating mechanism on RNSGA-II were studied. Meanwhile, a conver-
gence parameter was proposed to evaluate its performance compared
to similar approaches proposed in the literature. Finally, computation
time of running the framework with different number of customers was
analyzed. It was shown that the framework was successful to scale the
number of customers up with a reasonable computation time compared
to other contributions.
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