
 1

Elicitation, Representation and Management of Software Design Knowledge

Behrouz H. Far and Mohsen Afsharchi
Department of Electrical & Computer Engineering, University of Calgary

{far, mafsharc}@ucalgary.ca

Abstract

In this research we focus on understanding the nature
of the knowledge used during the various phases of the
software development process. We have found that there
are two types of knowledge involved in software
development: (1) descriptive knowledge represented by
conversion and coding rules, e.g., a rule for splitting a
class into two; and (2) prescriptive knowledge required
for deployment of global or local strategies at a micro
design level; e.g., knowledge required to answer the
question “why should a class should be split into two?”
Most of the already existing knowledge management
solutions address descriptive knowledge. Elicitation
and management of the prescriptive knowledge is
difficult in the sense that it is probabilistic, personalized,
distributed and context specific. Also we have found that
prescriptive knowledge tends to be used in decision
making processes involving multiple stakeholders with
different perspectives (e.g., designer, tester, software
architect and project manager). We also report on a
prototype system called ISS-OKM to extract and reuse
both the descriptive and prescriptive knowledge.

1. Introduction

Today’s software industry is characterized by shorter
product lifecycles, faster delivery, multiplicity of
development technologies, increased employee
turnover, physical and logical distribution of assets and
ubiquitous information technologies. A software
organization’s ability to manage its knowledge assets,
including humans, is a major source of competitive
advantage. This research is devoted to integrating
concepts and approaches from various disciplines,
including software engineering (SE), decision support,
ontology-based knowledge management, semantic
integration and computational intelligence in order to
provide optimal and unified solutions for the current
challenges in knowledge management applications.

Software Engineering’s knowledge is dynamic and
evolves with technology, organizational culture and the
changing needs of an organization’s development
practices. There are two viewpoints related to
Knowledge management (KM) in the software industry:
(1) information processing view, which has been widely
implemented; e.g., various flavors of the Experience
Factory (EF) [1], sees KM as archiving explicit
knowledge of individuals in technology-based
repositories, and (2) human-centric view, which
incorporates social and individual dimensions into KM
[2]. Kess et al. argue that software processes are
essentially knowledge processes, structured within a
KM framework [3]. Conventional KM solutions are
mainly based on a centralized architecture commonly
comprised of a central knowledge repository accessible
through formalized queries. Experience shows that such
architecture cannot be utilized effectively in real life.
Basili et al. acknowledge that for an organization to
implement the EF approach, a number of potential
barriers to success, such as the need to capture and
distribute knowledge quickly, must be overcame [1].

The core requirements for KM solutions in SE are [4]:
(1) Incorporate the management of knowledge assets,
which are distributed and belong to both people and
departments; (2) allow for dynamic classification and
distribution of knowledge; (3) allow for adapting to
diversified contents, representation and personalized
styles; (4) incorporate efficient (i.e., fast and effortless)
retrieval mechanisms; and (5) facilitate interaction
between distributed knowledge bases in order to support
social process of knowledge management. There is an
obvious need to investigate, design and implement such
a KM solution for SE.

In this research we investigate how to empower
distributed knowledge management with
ontology-based knowledge management, peer-to-peer
architectures and software agent technology in order to
build an orchestrated knowledge management (OKM)

 2

solution to manage intellectual assets for software
development organizations.

2. Related Works

Research in the following areas is particularly important
to this work:

2.1 Software design knowledge

Object-Oriented Analysis and Design (OOAD) has
become a very popular software development approach
since the 1990’s. Object elicitation and class modeling
are among the central activities in OOAD. The objects
are identified from the requirements, and the class
model is generated based on them as well. Generally,
there are two ways to specify the requirements: using
formal languages or using natural languages (NL). The
research community has focused on methods based on
formal language requirements [5,6,7], while NL is
widely used for requirements documentation in industry.
It is hard to automate NL requirements analysis, because
NL is inherently complex, vague and ambiguous [8].

Most of the commercial CASE (Computer Aided
Software Engineering) tools do not supply the
functionality of NL requirements analysis. However,
there are several such tools that have been developed for
research. CoGenTex Inc. developed a prototype tool
named LIDA (Linguistic assistant for Domain Analysis),
which provides linguistic assistance in model
development [9]. The tool can process textual
documents and help the user to generate a class model
visualized in UML (Unified Modeling Language).
NIBA (Natural Language Requirements Analysis in
German) is an interdisciplinary project between
computer scientists and computer linguists at the
University of Klagenfurt, Austria [10]. The tool can
parse requirements documents in German, interpret and
transform output of the parser to conceptual pre-design
schemas, validate the schemas and finally generate a
conceptual model in UML. These approaches only
generate the conceptual model, but the behavior of
classes still need to be identified separately. So far, it is
impossible for machines to automatically perform the
whole OOAD process, however it is possible to
automate some micro-activities in OOAD [11].

We have found that there are two types of knowledge
involved in software design: (1) descriptive knowledge
represented by conversion and coding rules, e.g., a rule
for splitting a class into two; and (2) prescriptive
knowledge required for deployment of global or local
strategies at a micro design level; e.g., knowledge

required to answer the question “why should a class
should be split into two?” Most of the already existing
knowledge management solutions address descriptive
knowledge (e.g., Experience Factory). Elicitation and
management of the prescriptive knowledge is difficult
in the sense that it is probabilistic, personalized,
distributed and context specific. Also we have found
that prescriptive knowledge tends to be used in decision
making processes involving multiple stakeholders with
different perspectives (e.g., designer, test engineer,
software architect and project manager).

2.2 Distributed architecture for KM systems

Nowadays, there is an increasing interest in the use of
peer-to-peer and multi-agent concepts in KM, mainly
motivated by the fact that KM domains involve an
inherent distribution of resources, problem solving
capabilities and responsibilities [12,13]. That is, the
integrity of the existing organizational structures and the
autonomy of participants must be maintained, which
calls for an autonomous and distributed representation
of KM systems [14]. The use of shared representational
ontologies has been questioned in [15] and a distributed
architecture based on explicitly distributed ontologies
has been proposed in [16]. We have discussed enabling
technologies and the research trends from Web-based
centralized KM to the distributed agent mediated
knowledge management in [4]. Other projects that
address these aspects are: COMMA [12], FRODO [17]
and EDAMOK [16].

2.3 Ontology-based knowledge management

The term “ontology” was first used in conjunction with
knowledge sharing and reuse by [18] and since then it
has been extensively used in knowledge management
research [17]. A general architecture for ontology-based
knowledge management has been proposed in [19]. In
the majority of KM applications, ontologies are
typically used for three purposes: (1) to support
knowledge visualization, where ontologies are
inspected in order to create new knowledge by analysis
and recombination of existing knowledge [20]; (2) to
support knowledge search, retrieval and personalization,
where ontologies are used to improve search and
retrieval of information by exploitation of ontological
background knowledge about the application domain;
and (3) to serve as the basis for information gathering
and integration, where some degree of formality of
ontologies allows partial automation of problem solving
and integration of information retrieval into business
application [16]. Using ontologies for managing
software experiences has been studied in [21].

 3

2.4 Semantic integration

Different software systems may use individualized
conceptualizations of a certain domain. To achieve
ontology-based semantic integration, two software
systems (or agents) must find a way to share the
semantics of the terms in their ontologies, this can be
done in several possible directions: (1) using a single
centralized global ontology- a single centralized global
ontology is defined for the application domain- and all
agents or computer programs in communication use
terms from this ontology; (2) merging source ontologies
into a unified ontology: ontologies defined on a
common domain by different applications have lots of
overlap, therefore merging the source ontologies into
one unified ontology before agent interactions is a way
to fulfill semantic integration [22]; (3) searching a set of
mappings (or matches) between two ontologies: instead
of trying to merge two source ontologies, finding a set
of mapping rules between them is an alternative way to
achieve semantic integration [22,23]; (4) runtime
ontology resolution: for a multiagent system, agents are
often from different heterogeneous environments, it is
impractical to restrict all agents to use a single ontology
or to have ontology merging, matching, and translation
services available prior to the deployment of the agent
system. A better way is to resolve semantic differences
when they arise during run-time interaction [24]. In a
multiagent environment, agents may often want to
maintain their own diverse ontology but still be able to
identify when they are referring to the same concept.
This allows for each agent to maintain control over its
own ontology but still be able to communicate with the
others without first converging to a common ontology,
as in [25].

2.5 Semantic Web

There are two attempts to convert information into
machine-processable knowledge. (1) Intelligent data
preprocessing [26]: these techniques try to extract
knowledge from mainly textual documents. Some of the
techniques are Web-mining techniques, including Web
link structure mining, Web content mining and Web log
mining. (2) Semantic Web [27,28,19]: this method tries
to inject machine-understandable knowledge into
documents by enriching the documents semantically
and has been developed using XML. Although XML
has had great impact on the software industry, it only
specifies syntactic conventions and any intended
semantics are outside the domain of the XML
specification. The Resource Description Framework
(RDF) is a recent W3C recommendation designed to
standardize the definition and use of metadata

descriptions of Web-based resources. As with XML, the
RDF data model provides no mechanisms for declaring
property names that are to be used. RDF Schema
(RDFS) takes a step further towards a richer
representation formalism and introduces basic
ontological modeling primitives. RDFS allows
definition of classes, subclasses, properties,
sub-properties, domain and range restrictions of the
properties of concepts. RDFS provides a standard
syntax for writing ontologies and a standard set for
modeling primitives, such as instance-of relationships.
Although RDFS can be regarded as an ontology
language, there are many knowledge elements that
cannot be expressed using RDFS. DARPA has released
the DARPA Agent Markup Language (DAML)
(http://www.DAML.org), a simple language for
expressing more sophisticated class definitions than
those permitted by RDFS. The DAML group joined
efforts with the Ontology Inference Layer (OIL) [29],
another effort providing more sophisticated
classification using constructs from frame-based
artificial intelligence. The result of these efforts is
DAML+OIL, a language for expressing sophisticated
classifications and properties of resources. Another
variation of DAML+OIL, pursued by W3C is the Web
Ontology Language (OWL) which is based on RDFS
(http://www.w3.org/TR/owl-features).

2.6 Agent mediated knowledge management

Agent-based software development combines and
builds on various computing technologies, including
object-orientation, parallel processing, distributed
computing, and mobile code. The principles and
perspectives are abstracted from artificial intelligence,
biology, system science and mathematics. Agent
Mediated Knowledge Management (AMKM) has been
an active research area in the software agent research
community in recent years [14]. It uses agent concepts
to analyze and model organizations and their knowledge
needs and to provide a reusable architecture to build KM
systems. AMKM is different from peer-to-peer KM in
the sense that (1) agents can learn and adapt themselves
to changes in environment; and (2) agents can get
involved in complex interactions. These two points
come from the fact that agents are autonomous and
social entities.

3. Representation and reuse of software
descriptive knowledge

We have developed a method for use-case model
generation, object identification and class modeling

 4

with respect to natural language requirements based on
the Rational Unified Process (RUP). Use-case language
schemas are proposed to reduce complexity and
vagueness of natural language. Some rules are identified
and used to automate class model generation from
use-case specifications. A CASE tool named Use-Case
driven Development Assistant (UCDA) is implemented
to support the methodology. UCDA can assist the
developer to generate use-case diagrams, use-case
specifications, robustness diagrams, collaboration
diagrams and class diagrams in IBM Rational Rose.
Another version of the same tool has been developed for
Eclipse [30]. They both help accelerate requirements
analysis and class modeling, and reduce the time to
market in software development.

3.1 Methodology

Based on the Rational Unified Process (RUP), the
activities and corresponding artifacts during
requirements, analysis and design are specified as
follows:
• Identify actors and use cases from stakeholder

requests.
• Structure the use cases into use-case diagrams.
• Generate the use-case specifications.
• Review the use-case specifications.
• Analyze the use-case specifications and generate

the analysis model.
• Review the analysis model.
• Generate the design model based on the analysis

model.

The whole process is divided into two parts based on
different concerns. The first part addresses NL
requirements analysis and use-case modeling. The
second part is concerned with the use-case realization
and class model generation. The artifacts and activities
in the process are shown in Figure 1. The output of the
requirements phase is a use-case model. Use cases are
means to capture the contracts between the stakeholders
of a system and its behavior [5]. A use-case model
comprises diagrams in UML and specifications that
record sequences of actions that a system can perform
by interacting with outside actors.

3.2 Implementation

To implement the methodology, we develop a CASE
(Computer Aided Software Engineering) tool named
UCDA (Use-Case driven Development Assistant)
composed of two parts: the first part for NL
requirements processing and use-case modeling, and the

other for use-case realization and class model
generation. The tool is integrated seamlessly with IBM
Rational Rose. The user can manage the tool with
Rational Rose’s add-in manager. Most artifacts
generated by UCDA are represented in XML and
visualized in Rose. Another version has also been
developed for Eclipse.

Stakeholder

Specifier

Analysis
Model

Find Actors
and Use Cases

Structure
Use Cases

System Analyst

Specify
Use Cases

Class
Design

Architect

Use Cases
Analysis

Architecture
Analysis

Designer

Design
Model

CheckPoint

CheckPoint

Part I

Part II

Actors and
Use cases

Use case
Diagrams

Use case
specifications

R
eq

ui
re

m
en

ts
A

na
ly

si
s

&
 D

es
ig

n

Figure 1. UCDA system architecture

The features currently implemented are as follows:
1. Parse the NL requirements and identify actors and

use cases, and then generate the use-case diagram
in Rational Rose.

2. Assist the user to finish use-case specification.
3. Realize the use cases, identify the classes, and

generate robustness diagrams and collaboration
diagrams in Rational Rose.

4. Validate the analysis class model via robustness
diagrams.

5. Generate the class model in Rational Rose.

Not all the activities shall be fully automated. The user
needs to interact with UCDA to supply the necessary
information, and the tool will help the user to develop a
model in UML for further revision.

3.3 Use-Case Modeling Environment

When the user has only the requests, s/he can start to
analyze with UCDA. Figure 2 is the environment for
requirements parsing. The user needs to paste or edit the
requests of a project in it. Then UCDA can help the user

 5

identify the use cases from the request and generate the
use-case diagram in Rational Rose.

Figure 2. NL parsing and use-case identification

Then the user can specify the use cases with the
assistance of UCDA. UCDA parses the user’s input
information and normalizes it based on use-case
language schemas. The structure of each statement in
the flow of events is identified, and all statements are
encoded in XML. An example use-case specification
with XML markups removed is given below.

Actors: customer, bank
Flow of Events:
Basic Flow:

1. the system starts withdrawal transaction;
2. the customer selects the account on the customer

console;
3. the system gets the account from the customer console;
4. the customer selects the amount on the customer

console;
5. the system gets the amount from the customer console;
6. the system generates the withdrawal transaction

information;
7. the system sends the withdrawal transaction

information to the network connection;
8. the bank gets the withdrawal transaction information

from the network connection;
9. the bank sends the withdrawal transaction approval to

the network connection;
10. the system gets the withdrawal transaction approval

from the network connection;
11. the system dispenses the cash in the cash dispenser;
12. the customer gets the cash from the cash dispenser;
13. the system records the withdrawal transaction

information into the log;
14. the withdrawal transaction end;

Alternative Flow:
If the bank does not approve the withdrawal transaction,
then
 i. the system displays error message on the customer

console;
 ii. the system records the withdrawal transaction

information into the log;
 iii. the withdrawal transaction end;

3.4 Use-Case Realization Environment
When the use-case model is ready, the user can use
UCDA to realize the use cases and generate the class
model. All the diagrams generated by the tool are
visualized in Rational Rose. The environment for
use-case realization is shown in Figure 3. The user can
set the glossary and select a use case to realize. When
collaboration diagrams are generated, the tool can
distribute the behavior and generate the class model in
Rational Rose.

Figure 3. Use case realization within the Rose environment

The robustness diagram generated by UCDA based on
the example specification is shown in Figure 4.

Bank

(from Use Case View)

Customer

(from Use Case View)

Customer console
(from Logical View)

Network connection
(from Logical View)

Cash dispenser
(from Logical View)

Withdrawal transaction
(from Logical View)

Log
(from Logical View)

Figure 4. Robustness diagram generated by UCDA

4. Representation and reuse of software
perspective knowledge

Emergence of distributed knowledge management in
organizational environments and the Semantic Web in
the World Wide Web which allow diversity of
ontologies, make it necessary for information retrieval
to be managed by intelligent software programs. These
software programs (i.e. Agents) should be able to use
machine learning techniques to improve information
retrieval efficiency. They also should be able to know
each other and know who knows what and query and
learn concept from each other. In addition, they should

 6

be able to negotiate with each other to provide the best
response to a query.

4.1 Methodology

Figure 5 shows a typical software organization with
several departments each having their own concept
structure and each maintaining their own knowledge
resources.

Figure 5. Software engineering organization

For each community within the organization a software
agent (or a coalition of software agents) is responsible
for eliciting, organizing, maintaining and sharing
information. Ontology in our agents is a mix of
meta-concepts and fine grained hierarchical concept
structures. The agents use a common core ontology
which could be the whole of meta-concept level or part
of it. We specifically mention that ontologies of our
agents in part of meta-concept level and also in fine
grained hierarchical concept structure are diverse.

Figure 6 shows an example of ontological structure for
an agent which is deployed in a software engineering
knowledge management environment. Meta-concepts in
this environment are concepts that are not directly
related to examples (e.g. documents). For example in a
software engineering knowledge management
environment, software is a very general concept and it
should be divided as sub-concepts to increase
knowledge management efficiency. Meta-concepts are
meta-knowledge about a given domain. We consider
meta-concepts and their correlation as core ontology for
our multi-agent system.

Fine grained concepts are concepts which are directly
connected to examples. We allow diversity of
ontologies at this level. As depicted in Figure 7, a lattice
structure represents “measurement”. This lattice
contains a tree sub-concept of “software measurement”

which are directly pointing to corresponding lattices.
Based on the application in which the agents are
deployed, the granularity of concept structure may
differ. For example in Figure 6 the Design node could
directly point to a lattice or it could be divided more to
other sub-concepts which are pointing to their
corresponding lattices. The agents should be able to
divide a concept to sub-concepts to avoid lattice
complexity.

We believe that this conceptual structure is flexible (as
opposed to the methods such as Experience Factory)
and yet is well suited to information sharing and
retrieval.

Suppose this agent is queried by another agent “do you
know anything about software measurement?”
Answering this query, agent locates concept nodes for
these words and following downward in lattice to find
related documents and features and send them back. “I
suggest you to include engineering in your query”, “If
you exclude ‘measurement’ from query I can give you
more examples” or “All of my examples which have
‘measurement’ also have ‘software’ in them” are some
examples of information that agent could send to
querying agent in the case of negotiation.

Figure 6. Concept hierarchy

Each software agent responsible for a domain (or a work
space) must learn (1) from the existing chunks of
information added to its repository; and/or (2) from the
other agents who share partial representation of the
domain. In the following subsections we present the
individualized and collaborative concept learning
mechanisms handling these two problems, respectively.

 7

Figure 7. Lattice of concepts

4.2 Individual concept learning mechanism

Figure 8 shows the concept formation process for an
individual agent. For each concept or set of concepts our
agents have some objects (i.e., documents) and features
(e.g. bag of words) representing them. Using rules and
algorithms of formal concept analysis, the agent builds a
formal context and its corresponding concept lattice.
This structure can be gradually improved when new
objects and features become available. An important
point here is that the formation of formal context is both
automated and supervised. This means that higher level
concepts in the concept lattice are generated
automatically but can explicitly be labeled to show the
name of that concept by the supervisor.

Figure 8. Individual concept learning mechanism

4.3 Collaborative concept learning mechanism

In collaborative learning, the goal of the learner agent is
to learn a concept from the other agents. For the learner
agent, a major problem is how to figures out that it does
not know a concept. The simplest method to handle this
is tracking the incoming queries. When a learner agent
has failed to answer some queries, it tries to find
coherence among previous unanswered queries. Using
this coherence and the elements of incoming queries the
learner agent makes a new query and submits it to a set
of teacher agents to find out about the probable concept.

Based on our agent model, the teacher agents possess
examples and features regarding a certain concept and
they can also judge whether an example belongs to a
concept or not. Therefore they can support learning
agents with examples and features and also they can
answer learning agents’ questions regarding
classification of a certain example. As stated previously,
the flexible hierarchical structure of lattice lets teacher
agents to traverse their concept structure from the
concept toward its examples and features or to traverse
the concept structure from features to concepts. This
flexibility can help teacher agents to answer the learner
agent queries based on features or the concept name.

Collaboration in this method is a modified version of
weighted majority voting. Here the learner agent uses
advice of teacher agents to evaluate examples received
and weight their evaluation utilizing a distance function.
In the meantime learner agent uses Formal Concept
Analysis (FCA) and considers examples as objects and
makes a formal context using selected examples and
features. Then it locates the most situated place in its
ontological structure to place the concept lattice. In the
best case the learner agent can construct a formal
concept structure for a concept which includes all
examples and features.

5. Conclusions

In this paper a novel methodology for elicitation,
representation and management of knowledge for
software development organizations was presented.
This method integrates both the descriptive and
perspective knowledge was presented. This
methodology has several advantages over the existing
ones, including ease of elicitation, representation and
management of organizational knowledge.

Acknowledgements.
Several former students of the Intelligent Software
Systems (ISS) Laboratory, Faculty of Engineering,

 8

University of Calgary, have contributed to this project
and the authors acknowledge their effort and thank them
collectively.

6. References

[1] Basili, V., Costa, P., Lindvall, M., Mendonca, M.,
Seaman, C., “An Experience Management System for a
Software Engineering Research Organization,” Proc. 26th
Annual NASA Goddard Software Engineering Workshop,
pp. 29-35, 2002.

[2] Malhotra, Y., “Knowledge management and new
organization forms: A framework for business model
innovation,” Information Resources Management Journal,
vol. 13, no. 1, pp. 5-14, 2000.

[3] Kess, P., Haapasalo, H., “Knowledge Creation through a
Project Review Process in Software Production,” Intl. J.
of Production Economics, vol. 80, no. 1, pp. 49-55, 2002.

[4] Afsharchi M., B.H. Far, “Knowledge Orchestration
Agency: Knowledge Management Using Intelligent
Software Agents,” Decision Support in Agent Mediated
Environments, Chapter 3, pp. 71-89, G. Phillips-Wren
and L. Jain (Edts.), IOS Press B.V., 2005.

[5] Cockburn, A., ”Writing effective use cases,”
Addison-Wesley, 2000.

[6] Bois, P. D., Dubois, E., Zeippen, J.M., “On the use of a
formal RE language-the generalized railroad crossing
problem,” Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering, Annapolis
MD, pp. 128-137, 1997.

[7] Li, X., Liu, Z., He, J., “Formal and use-case driven
requirement analysis in UML,” 25th Annual International
Computer Software and Applications Conference,
COMPSAC2001 Chicago, pp. 215-224, 2001.

[8] Boyd, N., “Using natural language in software
development,” Journal of Object-Oriented Programming
vol. 11, no. 9, pp. 45-55, 1999.

[9] Overmyer, Scott P., Lavoie, B., Rambow, O.,
“Conceptual modeling through linguistic analysis using
LIDA,” Proceedings of the 23rd International Conference
on Software Engineering, ICSE 2001, Toronto, pp.
401-410, 2001.

[10] Niba, L.C., “The NIBA workflow: From textual
requirements specifications to UML-schemata,”
Proceedings of International Conference on Software &
Systems Engineering and their Applications, ICSSEA
2002, Paris, 2002.

[11] Liu, D., “Automating transition from use cases to class
model,” MSc Thesis, University of Calgary, 2003.

[12] Gandon, F., Dieng, R., Corby, O., Giboin, A., “A
Multiagent System to Support Exploiting an XML-based
Corporate Memory,” Proc. PAKM’00, Basel, 2000.

[13] Susarla, A., Liu, D., and Winston, A., “Peer-to-Peer
Knowledge Management,” Handbook of Knowledge
Management, vol. 2, ch. 39, 2002.

[14] Dignum, V., “Using Agents to Support Knowledge
Sharing,” Proc. Workshop on Autonomy, Delegation and
Control, AAMAS’03, Melbourne, 2003.

[15] Wang, J., and Gasser. L., “Mutual Online Concept
Learning for Multiple Agents,” Proc. AAMAS’02,
Bologna, Italy, pp. 362-369, 2002.

[16] Bonifacio, M., Bouquet, P., Manzardo, A., “A Distributed
Intelligence Paradigm for Knowledge Management,
Bringing Knowledge to the Business Process,” Proc.
AAAI Spring Symposium, Technical Report SS-00-03,
AAAI Press, 2000.

[17] Abecker A., van Elst, L., “Ontologies for Knowledge
Management,” in Handbook on Ontologies, S. Staab and
R. Studer (eds.), Ch. 22, pp. 435-454, Springer, 2003.

[18] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R.,
Senator, T., Swartout, W., “Enabling Technology for
Knowledge Sharing,” AI magazine, vol. 12, no. 3, pp.
36-56, 1991.

[19] Fensel D., “Ontology-based Knowledge Management,”
IEEE Computer, vol. 35, no. 11, 2002.

[20] Kumar, V., Furuta, R., and Allen, R.B., “Metadata
Visualization for Digital Libraries: Interactive Timeline
Editing and Review,” ACM Digital Libraries, pp.
126-133, 1998.

[21] Nour P., “Ontology-based Retrieval of Software
Engineering Experiences,” MSc thesis, Department of
Computer Science, University of Calgary 2003.

[22] Noy, N.F., Musen, M.A., “PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment.”
Proc. 17th National Conf. on Artificial Intelligence
(AAAI-2000), Austin, TX, 2000.

[23] Doan, A., Madhavan, J., Domingos, P., Halevy, A.,
“Ontology Matching: A Machine Learning Approach,”
Handbook on Ontologies in Information Systems, S.
Staab and R. Studer (eds.), pp. 397-416, Springer, 2004.

[24] Wiesman, F., Roos, N., Vogt, P., “Automatic Ontology
Mapping for Agent Communication. Technical Report,
MERIT, 2001.

[25] Steels, L., “The Origins of Ontologies and
Communication Conventions in Multi-agent Systems,” J.
Autonomous Agents and Multi-Agent Systems, vol. 1, no.
2, pp. 169-194, Kluwer, 1998.

[26] Han J., Chang K., “Data mining for Web Intelligence,” in
Web Intelligence, Springer Monograph 2003.

[27] Martin P., “Knowledge Representation, Sharing, and
Retrieval on the Web,” in Web Intelligence, Springer,
2003.

[28] Sure Y., “On-To-Knowledge: Ontology-based
Knowledge Management Tools and their Application,”
in: German Journal (KI), vol. 1, pages 35-37, 2002.

[29] Bechhofer S., “An informal description of Standard OIL
and Instance OIL,” Ontology Inference Layer OIL
Whitepaper, 2000.

[30] Chang J., P. Chwiecko, M. Doan, and L. Ko, “Eclipse
Plug-in for Automation of Requirements Analysis,
Modeling and Code Generation for Object-Oriented
Software Design,” Proceedings of the 2nd Symposium on
Electrical, Computer and Software Engineering,
University of Calgary, 2005.

