
Finding Better Teammates in a Semi-cooperative
Multi-agent System

Sara Amini
Department of Computer Science and

Information Technology
Institute for Advanced Studies in Basic Sciences

Zanjan, Iran 45137-66731
Email: s-amini@iasbs.ac.ir

Mohsen Afsharchi
Department of Electrical and

Computer Engineering
University of Zanjan

Zanjan, Iran 45371-38791
Email: afsharchim@znu.ac.ir

Abstract—Although in semi-cooperative systems, agents are
self-interested, they have to help others to get their help in the
requirement time. However, designing a distributed method that
encourages agents to be truthful and cooperative is challenging.
If each agent is able to find useful co-workers to team up with,
they are inspired to cooperate with each other, which leads to
desirable results for both individuals and the system as a whole.

In this paper, a distributed mechanism on the basis of
reinforcement learning (RL) is proposed which guides agents
to find better teammates i.e. agents which are cooperative and
useful for a long run. A model-based RL is used to model agents’
beliefs toward others as transition probabilities where agents try
to influence these probabilities in a way they get benefit from.
We clarify properties of our system such as Nash equilibrium
by some theorems and test the mechanism by applying it to
a distributed sensor network designed for target tracking. The
simulation results show effectiveness of the method since RL
agents gain more in comparison to selfish and random-policy
agents. Experiments also indicate that mixed-strategy RL agents
benefit more by taking advantage of further synergy produced
by forming larger teams.

I. INTRODUCTION

In a multi-agent system (MAS) with selfish agents, encour-
aging agents to be truthful and cooperative is not a simple task.
Rational agents by definition have one goal; maximizing their
own utilities, and in many cases they do not tend to help others
to avoid paying any costs. However, in some situations, agents
cannot carry out their desired tasks alone as doing some tasks
requires more resources than an agent can supply by itself.
In these systems (called semi-cooperative) the performance of
each agent is highly dependent on the performance of others
and the system as a whole [1]. Thus, a method is required to
inspire agents to be truthful and help others.

The first idea might be a method in which each agent gives
scores to its co-workers, and a central unit controls resources of
the system [2]. A strategy-proof mechanism makes sure agents
behave truthfully [3], but there is still a problem with this
plan due to existence of the main controller which decreases
scalability of the system. Reducing the central controller’s role
in these systems is our main motivation in this work, and to
do that, we let agents to negotiate for resources, and to exhort
them to cooperate with each other, we give them a guideline
which is reinforcement learning (RL).

In real world systems, requesting help from an agent may
be rejected since the requested agent being busy at the require-
ment time. Learning helps agents to monitor others’ behaviors
in a long run process and prevent them to be affected by unin-
tentional oscillations of their co-workers’ behaviors. Learning
also has the merit of restraining agents to be influenced by
intentional instant changes of selfish agents’ behaviors which
want to deceive cooperative agents and persuade them to trust
them by offering a good contract in the need time while having
a history of untruthful behavior. By RL, agents try to find better
teammates in the system; i.e. agents which can be useful, not
only for a short period of time, but also for a long time. This
means they seem to have high quality resources and also be
loyal and cooperative.

A problem in distributed sensing (managing sensors spa-
tially distributed in an area) is that each sensor has a local
view of the environment and their obtained data, sometimes are
incompatible. Tasks of the system can be done more accurate
if sensors cooperate with each other to fuse their data [4].

If each sensor possessed by a different owner, the situation
becomes more complex since individual sensors might have
intentions to satisfy just their own stakeholder and use others’
resources, but be unwilling to give theirs to others to pay as
less cost as possible. In addition, sensors’ goals might be in
conflict with each other [2].

Distributed sensor networks (DSNs) with different stake-
holders have applications in Pico-satellite projects, multina-
tional multiplatform military exercises, and traffic control [5].

The goals of target tracking systems are detecting moving
objects in an area and determining their features like their
path [6]. To test our method in practice, a DSN (with different
owners) for target tracking is implemented in our work.

The rest of this paper is organized as follows; in the
next section, a short review of the previous related works is
presented. In Section III the problem is formally defined. In
Section IV the system model is explained. System properties
and experimental results are presented in the next two sections.
Finally, Section VII concludes this paper and gives some
directions for future researches.

II. RELATED WORK

Team or coalition formation has a key role in MASs since
it is highly related to distributed problem solving which is a
main goal in designing a MAS. One famous application of
distributed problem solving is distributed task (or resource)
allocation among both cooperative and self-interested agents.
In this section, we review some of these works.

Gaston and desJardins introduce a distributed on-line learn-
ing mechanism called agent-organized network (AON) as a
structure-based dynamic team formation tool for cooperative
agents [7]. The researchers in [8] propose a hierarchical model
by using Q-learning in a cooperative context. Ahn, et al
[9] present a multi-dimensional trust (MDT) model in an
environment with self-interested agents. Agents use MDT to
recognize beneficial teammates by employing a weighted sum
of MDT components, and in order to learn these weights, Q-
learning is used.

Pippin and Christensen [10] use some auctions for task al-
location in a multi-agent system. They employ an observation-
based trust model and a shared reputation mechanism to
determine appropriate agents for auctions. The researchers use
a Beta distribution to build their trust model. Although [9],
[10] have some similarities to our work, there are some big
differences too. In both [9] and [10], agents learn about other
agents’ behaviors via some probabilities but they never try
to affect these probabilities. In contrast, in our work, agents
recognize useful co-workers and they attempt to make good
beliefs in these agents. The beliefs are modeled as transition
probabilities of a model-based RL (Certainty Equivalence [11])
and agents consciously try to increase probability of forming
teams with beneficial co-workers.

Learning to form coalitions has been subject of many
researches in the DSNs area, especially by MASs scientists.
Generally, these projects can be divided into two categories:
networks with sensors owned by just one stakeholder, and
those with different owners. We start by the first type.

Glinton et al [12] use a graph to model coalition structure
of the network and try to improve quality of coalitions by
modifying this graph. In [13] researchers use a hierarchical
structure to have a self-organized DSN. The authors of [14]
define some features (like P1, . . . , P6 in our work) that by
using a weighted sum of them, agents determine suitable co-
workers. Then agents start negotiations with these candidates
and on the basis of obtained results, update the weights (a
form of a model-free RL). The authors use this approach in
a cooperative context and they do not need to consider the
effect of selecting one agent instead of another. However, in
our work with self-interested agents, sensors need to be more
careful about the effect of these selections and that is why we
use a model-based RL as mentioned before. In [15], the authors
present a self-organizing resource allocation (SORA) method
in a DSN which defines a virtual market in the network. The
work in [16] presents an agent-based model (with two types
of agents; sensor-agents and task-agents which negotiate with
each other) to manage resources of a DSN.

In this paragraph we summarize some of the works about
DSNs with selfish agents. A centralized mechanism on the
basis of VCG (where agents value their obtained information
by Fisher information) is used in [2]. Dash uses a second-price

sealed bid auction for resource allocation in a DSN [17]. In
his work, the sensors which want to give information to others
assumed to be sellers and the demanding sensors are buyers.
Each seller acts as an auctioneer and auctions are executed
simultaneously. We use negotiations rather than simultaneous
auctions in our work because they can be performed indepen-
dently whenever a demanding sensor needs and by learning
trusted agents, it can be changed to a simple message passing,
so agents waste less time in this highly dynamic environment.
The work in [18] presents a centralized trust-based mechanism
on the basis of VCG which is efficient, individually rational
and incentive compatible.

III. PROBLEM DEFINITION

Let A = {a1, a2, . . . , aN} and T = {t1, t2, . . . , tM} be the
set of agents and tasks respectively, and assume each agent is
owned by a different stakeholder.

Each agent in every moment is in one of these two cases:
Busy or Not-busy. In Busy, they are using their resources
for doing their own tasks or helping others to perform their
desired tasks, so they incur a cost. They cannot accept any help
request as they cannot afford it due to their limited resources
and also because this behavior gives some agents opportunities
for malicious behaviors (getting resources of the system and
never trying to make up for that). Offering a systematic method
which records truthful behaviors (without a central controller)
leads to desired results for the system.

There are several factors to be considered in finding an
appropriate teammate; the first is the quality of doing a task
ti by some agent aj , as different agents might have different
capabilities. The second is the cost of persuading some agent
to do a task, and the last but not least is the belief of an
agent in how much the potential helper really is apt to help; If
there exists another demanding agent ak which offers a better
contract, does aj still like to free up its resources for ai? Agents
are given RL as a guideline to assist them making the best
decisions in this complicated environment.

IV. SYSTEM MODEL

In this section, we present our RL model and the way
agents can use its results to learn which agent they must help
in the system and expect to get help from to maximize their
gains.

A. Reinforcement Learning Modeling

Equation 1, called Bellman equation [19], is the base of
RL where, V (s) is the value (long-term usefulness) of state s,
R(s) is the immediate reward of s, S and A are the set of states
and actions respectively, γ (0 ≤ γ < 1) is the discount factor,
and Psa(s

′) is the transition model implying the probability of
reaching state s′ by taking action a in s.

∀s ∈ S : V (s) = R(s) + γmax
a∈A

∑
s′∈S

Psa(s
′)V (s′) (1)

Neighbors of ai are agents which are known by it and are
represented by N(ai) in our work. Assume agent ai requires
k resources to do a task tj which is equivalent to needing a
k-member team. If |N(ai)| = n, ai should seek the best team
in a

(
n
k

)
-member search space. With this kind of modeling,

each RL state would be one of the teams ai can join. To get
rid of this big search space, we model each RL state as an ai’s
neighbor, but assume ai chooses k states rather than one1.

In a semi-cooperative environment, agents have to help
others because they need to get help from them. They try to
find, help and also get help from some agents which seem
truthful and cooperative: if agents help them, they can expect
the help receivers compensate in the future. Agents cannot just
rely on the immediate offered utility when deciding to help
others or needing to get help, since this gives selfish agents
the opportunity of deceiving them and devouring resources
of the system. If the network is able to record cooperative
behaviors in a systematic way, agents can trust some limited
set of agents, help them and expect to get help from in the
need time.

In order to select the best team candidates, agents should
consider some factors. First, they need a way to measure
the quality of performing a task by some agent which is a
context-specific quantity and for instance in a DSN, Fisher
information [2] is a good choice to determine how much
a sensor’s information is valuable. In our work, the quality
provided by aj’s resources to ai is shown by Q(ai, aj).

The second is the cost of doing a task which can be seen as
the exchanged money in the negotiation, but its functionality
can be broadened. Credit is defined as a measurement in the
negotiation phase (before team formation) which is a more
general term than cost or money, as we do not necessarily
need agents transfer money in the system. Credit is a quantity
that agents can save gradually to understand how much others
value their help; the more valuable they seem to an agent,
the better to team up with it. We use C(ai, aj) as a notation
for amount of credit that aj gives to ai to get its resources in
return.

The third factor is the probability of making a team with
some agent. Due to uncertainty in the environment, agents try
to learn others’ behavior patterns via some probabilities. These
probabilities are the probability of coming to an agreement to
get help from some agent such as aj , shown by PQ(aj), and the
probability of persuading aj to give some amounts of credit (in
exchange for the hired resources), shown by PC(aj). Agents
want to recognize useful teammates in the system, and try to
increase PQ and PC of them. They attempt to estimate PQ

and PC and also the future values of these quantities (after
accepting or rejecting the current offers). By using Bellman
equation, agents try to keep a balance between these factors
(credit, quality and probabilities PQ and PC). In RL literature,
we ought to distinguish between the long-term desirability of
of each state and its immediate goodness. Let VQ(aj) and
VC(aj) denote the (long-term) value of agent aj from quality
and credit perspective when some agent decides to form a team
with it (i.e. in the future, how much it is worth teaming up
with aj from quality and credit points of view).

1If k ≪ n, finding the best k elements of an n-member state-space
has time complexity O(n) which is better than finding the best of a
state-space with teams as states which needs O(

(
n
k

)
). If k approaches

n but still k < n, in the worst case we have to sort an n-member
array which needs O(n logn) and this is again better than O(

(
n
k

)
).

The only case O(
(
n
k

)
) surpasses O(n logn) is when k = n, but in this

case agents do not need to learn anything! If k = 1; O(
(
n
k

)
) = O(n),

so both models result the same complexity.

In order to model agents’ beliefs as probability distri-
butions, a model-based RL is needed, in which two types
of parameters must be learned: transition probabilities and
state rewards. Certainty Equivalence [11] is a simple model-
based RL where agents save the results of taking different
actions at different states and by using them, they gradually
approximate transition probabilities and state rewards. In our
work, transition probabilities are PC and PQ (assume we want
to solve two RL problems in parallel, one for quality and the
other for credit), and rewards of a state are C and Q (depending
on agents want to find a state for getting credit or quality from).

At first, imagine ai needs to find the best agent (state in
RL literature) to get help from. By applying Bellman equation
to ai’s neighbors, N(ai), we define

VQ(aj) := P1(aj)Q(aj) + γ max
ak∈N(ai)

P f
Q(ak|aj)VQ(ak), (2)

where P1(aj) is the probability of getting aj’s resources in
the negotiation, Q(aj) is the average amount of quality aj can
provide, and P f

Q(ak|aj) equals PQ(ak) in the next round, while
choosing aj in the current one (P f

Q(ak|aj) shows the belief of
ak after forming a team with aj).

By using Negr(ai, aj) as the number of negotiations ai

opened with aj , and Negs(ai, aj) as the number of successful
negotiations ai conducted with aj [14], we have

P1(aj) :=
Negs(ai, aj)

Negr(ai, aj)
.

P1(aj) can be seen as an approximation of PQ(aj), but we
can use some parameters similar to features of [14] as a more
precise approximation. P1(aj) shows the percentage of times
negotiations with aj (to get its resources) were successful.
It does not imply these successful negotiations make what
percentage of all successful negotiations ai ever experienced.
For example if ai asks for aj’s and ak’s resources once and ten
times respectively, and they both agree to give their resources
in all of these times, P1(aj) and P1(ak) are equal, even though
obviously, ak is more reliable than aj . By modifying features
of [14] to be more appropriate to our semi-cooperative context,
we use Negtr(ai) as the total number of times ai opened
a negotiation with its neighbors, and Negts(ai) as the total
number of times ai conducted a successful negotiation with
its neighbors, and by applying them ai calculates

P2(aj) :=
Negs(ai, aj)

Negtr(ai)
,

P3(aj) :=
Negs(ai, aj)

Negts(ai)
,

PQ(aj) := w1P1(aj) + w2P2(aj) + w3P3(aj),

where wis are normalizing factors.

P f
Q(ak|aj) is the probability of getting ak’s resources after

teaming up with aj . Sometimes it may be worth ignoring some
utilities to make a good belief in a more valuable agent.

Remark 1: The reason why in Equation 2 a sigma (in
the second term) is dropped (compare 1 to 2) is that the
summation in Equation 1 is done on all states an agent can
reach by taking action a. In our context, taking an action means
deciding to open a negotiation with an agent which may lead
to get some resources (if the negotiation finishes by success)
or failure. Clearly, the probability of a successful negotiation is
complement to the probability of a failed one. If ai experiences
a failed negotiation it gets nothing, thus
VQ(aj) = P1(aj)Q(aj)

+ γ max
ak∈N(ai)

[P f
Q(ak|aj)VQ(ak) + (1− P f

Q(ak|aj))× 0]

= P1(aj)Q(aj) + γ max
ak∈N(ai)

P f
Q(ak|aj)VQ(ak)

The first term of Equation 2 is the immediate reward about
which agents do not have any prior knowledge, and they use
average obtained reward as an approximation. Because reward
is received after negotiation and agents have uncertainty about
it, they use mathematical expectation as an estimate:

E(Q(aj)) = Ps(aj)Q(aj) + Pf (aj)× 0 = Ps(aj)Q(aj)

Ps(aj) is the probability of a successful negotiation with aj

when an agent needs its resource, which equals P1(aj) in our
work, and Pf (aj) is the probability of a failed negotiation.

Thus far, we have just explained about quality, but all of
the mentioned discussions can be applied to the credit concept
too; at first P4, P5 and P6 are defined similar to P1, P2 and P3

respectively:

P4(aj) :=
Negs(aj , ai)

Negr(aj , ai)
,

P5(aj) :=
Negs(aj , ai)

Negtr(aj)
,

P6(aj) :=
Negs(aj , ai)

Negts(aj)
,

and by using them PC is defined as
PC(aj) := w4P4(aj) + w5P5(aj) + w6P6(aj),

and finally, Bellman equation for credit is defined as
VC(aj) := P4(aj)C(aj) + γ max

ak∈N(ai)
P f
C(ak|aj)VC(ak),

where its parameters can be interpreted like Equation 2, except
that here quality changes to credit.

B. Learning to Find Better Co-workers

So far, ai has solved two RL problems in parallel; one for
credit (to understand which agent it must help) and another for
quality (to understand from which agent it must get help). In
this section, we explain how ai can make a relation between
them to find better co-workers.

Total value of each of ai’s neighbors (state in RL literature)
at first glance may be defined as

V (aj) := wQVQ(aj) + wCVC(aj), (3)
where wQ and wC are weights agents can learn, but we set
wQ + wC = 1 for convenience. Needing to form a k-member
team, ai’s long-term utility can be defined as

V (ai) :=
∑

ail
∈N(ai)

l=1,2,3,...,k

V (ail).

There is a problem with Equation 3 because selfish agents
can only use resources of the system without trying to compen-
sate for that and increase the second term of Equation 3 and
consequently V in an unfair way. Although reducing wC might
seem as a solution, adding a term that maintains a balance
between these two terms would be a better solution. We do not
want to let this new term become biased by credit to prevent
untruthful agents benefiting from offering a high amount of
credit when needing help, while not helping others effectively.
So we define Balance factor as

∀aj ∈ N(ai) : B(aj) :=
p1(aj) + p2(aj) + p3(aj)

p4(aj) + p5(aj) + p6(aj)
,

and therefore Equation 3 turns out to be
V (aj) := wQVQ(aj) + wCVC(aj) + wBB(aj), (4)

where wQ + wC + wB = 12.

the numerator of B(aj)is the probability of aj helping ai

and its denominator approximates the probability of ai helping
aj (from aj’s point of view). Thus, B indicates the balance
between ai and aj ; a high B means aj helped ai more, and ai

has a commitment to make up for that. Having B near to 1
implies that there is a balance between ai and aj , and a very
low B shows aj potentially has a tendency to just use ai’s
resources and is disinclined to help when ai needs.

By using B(aj), ai has two purposes. First, if aj just
receives ai’s resources and never tries to compensate, ai can
recognize it even though aj’s VC and consequently V are high.
Second, if aj has helped it much in the past, but ai could
not make up for that, ai can recognize it. The reason is that
although ai has a good belief about aj , aj does not; it may
be the case that aj is trying to replace ai with another more
helpful agent, and ai must be prepared for that.

C. Trust Factor

By applying a pure strategy, RL agents try to form k-
member teams when needing k resources. Generally, an RL
agent should spend some time to explore the environment
and after knowing it properly, start to benefit from what has
learned (exploitation step). Exploitation in our work means
each agent starts to make a k-member team with a fixed set of
agents on the basis of RL results. Switching from working
with n members to k ones, especially when the difference
between these two numbers is huge, can reduce the social
welfare severely. To prevent this situation, we let agents to
use a concept called Trust factor which is defined as

∀aj ∈ N(ai) : T (aj) :=
VQ(aj)

VC(aj)
.

Agents use T between exploration and exploitation steps to
smooth effects of this change in their strategies. In fact, be-
tween these two steps, agents can eliminate some agents which
have very lower T than their other neighbors. In this way, they
omit some (not useful) states from their search spaces and the
smaller the search space, the faster RL converges and the cost
of performing each RL step decreases, but more important
than these two advantages, agents can smooth switching from
working with n members to k ones.

D. RL in a Semi-cooperative Sensor Network

In a DSN for target tracking, sensors usually have to team
up to estimate path of a target with an acceptable precision.

Assume aj and ai are neighbors in a network. They are
not aware of each other’s status. A truthful behavior means if
one is in Not-busy status and the other asks for help, it reveals
its status honestly and helps the requester. However, due to a
need to spend some costs, they might not tend to tell the truth.

2By running our model several times, we understood it is better to set
wQ > wC ≫ wB at the beginning, but when the system approaches the
balance (convergence in RL literature), we gradually let wQ = wC = wB .
Another point is that, by setting upper and lower bands for C and then scaling
Q and B accordingly, we would have the same domains for all of them (C,
Q and B), which makes comparison more fair.

We believe RL can be seen as a distributed solution to this
problem since by using it, agents (i.e. sensors in our work)
learn about others’ behaviors gradually and the system is able
to store truthful behaviors’ information in a distributed manner.

In order to use the proposed RL method, we need an
evaluation metric to compute the quality of a team candidates’
resources. Quality in our model (Equation 2) is a context-
specific concept and in our work (a DSN), we use Fisher
information as an evaluation metric [2].

We cannot just use Fisher information as the quality mea-
surement; there must be a balance between Fisher information
and the paid credit, and sensors should themselves be able to
decide about the value which one may be worth to them. By
defining the quality like Equation 5 sensors have flexibility to
decide about the value of these parameters.

Q(aj) = wfI(aj) + wc(MC − C(aj)) (5)

In Equation 5, I(aj) is Fisher information provided by
sensor aj’s data for the current target, MC is the maximum
amount of credit an agent can afford for a contract and C(aj)
is the credit aj demands to give its resources to the requester.
Two factors are important for a demanding sensor: first, value
of the supplier’s information, which is determined by Fisher
information, and second, cost of the supplier’s resource that the
fewer the better, so appears with a negative sign in Equation
5. Coefficients wf and wc show the importance of these two
terms. For instance, the demanding sensor might value the first
term more than the second for a target which is very important
for it and increases wf in comparison to wc, and vice versa
when the target is less important or when it has spent too much
credit in the past. However, wf + wc = 1 in all situations.

Finally, 0 < I(aj) < MC; domain of Fisher information is
changed to domain of MC to make comparison easier and more
fair.

V. SYSTEM PROPERTIES

After running some steps to explore the environment,
agents start to choose agents with the highest V to make teams
with them. If their team candidates agree to join them, this
greedy behavior in selecting k members leads to a pure strategy
which changes the belief probability distribution of each agent
such as ai over its neighbors from a uniform distribution

P (ai1) =
1

n
, P (ai2) =

1

n
, P (ai3) =

1

n
, . . . , P (ain) =

1

n
where aij ∈ N(ai) and |N(ai)| = n, to

P (ai1) =
1

k
− ϵ1, P (ai2) =

1

k
− ϵ2, ..., P (aik) =

1

k
− ϵk,

P (aik+1) = δ1, . . . , P (ain) = δn−k (6)

where
∑k

l=1 ϵl =
∑n−k

m=1 δm.

If ai is successful in forming its desired team, it starts to
give and get help from a fixed set of agents. So, it begins to
increase P1, . . . , P6 of this set, and consequently their functions
PQ and PC . This leads ai to differentiate between its own team
members’ PQs and PCs from others’. This situation happens
in probabilities of ai’s teammates too, at least about ai. Thus,
after exploring enough in the environment, ai is able to find
a set which is responsible to satisfy, and also has a right to
demand its required resources. If ai needs k resources, it starts
to make a k-member team, so it should satisfy k agents in the

system to modify their beliefs in favor of itself to get benefit
from their help in the future.

This behavior leads to a Nash equilibrium (NE) as shown
in the following theorem.

Theorem 2: When an agent’s probability distribution over
its neighbors converges to Distribution 6, using a (pure)
strategy that selects the first k elements (with the highest P)
is a Nash equilibrium.

Proof: If ai reaches Distribution 6, there are k members
which recognize it as a useful element in the system. Thus, if
ai asks help from these members, they agree with probability
1/k which is higher than any other belief probability values
(Note that ai needs k probability values to be maximum at the
same time and uniform distribution 1/k is what it requires).
Hence agents by selecting the best k members which have
higher probability values get more than selecting at least one
element outside of this k-member set. So, by changing its
strategy unilaterally, ai does not get something more, and as a
result, this strategy is a Nash equilibrium.

Having a system which converges to the NE does not
always guarantee that we have an appropriate model. If in the
NE, a social choice function be maximized, and by moving
toward NE and having truthful and cooperative behaviors,
agents gain more, the system will present desirable results in
both levels: individuals and the system as a whole. We prove
in the following theorems that the proposed method has these
desirable properties in the NE.

Theorem 3: The proposed method encourages agents to be
truthful and cooperative.

Proof: If ai does not tell the truth about its status (does
not help others), and insists on this behavior, it gradually is
recognized by its neighbors: assume aj is one of ai’s neighbors
that has helped it a lot, but ai never compensate for that. So,
in aj’s probabilities, P1(ai), P2(ai) and P3(ai) and also their
functions B(ai), PQ(ai), and VQ(ai) have such low values that
potentially ai is not placed in the top k co-workers of aj . This
situation happens in other ai’s neighbors too, and if ai does
not change its dishonest behavior, it incrementally becomes
omitted from the network.

If none of agents help others, no one is able to do its tasks.

Now assume ai helps others in a random way. In this case,
its belief distribution over its neighbors does not converge to
Distribution 6. If it is not placed in the top k elements of RL
agents, it is neglected by them and gradually becomes omitted
from their search space. Random agents are not suitable
substitutions for lost RLs, by their random and changing
behavior. So, agents’ utilities decrease in this case too.

Theorem 4: If all agents employ the proposed method,
total information of the system is maximized in the ex-ante
Nash equilibrium.

Proof: The information provided by the system to ai is
Ii =

∑
aij

∈Tm(ai)

j=1,...,k

PQ(ai, aij)I(ai, aij),

where PQ(ai, aij) is the probability of ai receiving aij ’s re-
sources, Tm(ai) is ai’s team, and I(ai, aij) is the value of
information (Fisher information) aij can provide for ai.

Fig. 1. Comparison between number of tracked targets by RL and Selfish agents

Fig. 2. Comparison between number of tracked targets by RL and Random agents

Gained information of the system is defined as a summation
on all agents’ obtained information

I =
∑
ai∈A

∑
aij

∈Tm(ai)

j=1,...,k

PQ(ai, aij)I(ai, aij). (7)

There are two cases about I(ai, aij); Case1: Targets have
a pattern in the environment; so, each sensor ai finds the best
sensors on the basis of I and tries to increase PQ of them
(as much as it can on the basis of its budget) and this leads
to the best allocation provided that all of the sensors behave
truthfully and cooperate with each other.

Case 2: Targets move in a random way in the environment,
thus

E(I(ai, ai1)) ≃ E(I(ai, ai2)) ≃ . . . ≃ E(I(ai, ain)) ≃ µ

So, here ∑
ai∈A

∑
aij

∈Tm(ai)

j=1,...,k

PQ(ai, aij)I(ai, aij)

≃ µ
∑
ai∈A

∑
aij

∈Tm(ai)

j=1,...,k

PQ(ai, aij) ≃ µ

In Case 2, the precision is not important as all of the neighbors
have the same value in a long run. However, reaching µ is
dependent on PQ and by increasing k elements of the set
{PQ(ai, aij)|aij ∈ Tm(ai)}, ai is able to have the maximum
probability of obtaining its needed resources and this makes
Summation 7 maximized.

VI. EXPERIMENTS

To evaluate our model, a DSN simulator is created whose
goal is object tracking in an area. Our aim is to distribute the
role of the main controller in a semi-cooperative DSN and
present a method on the basis of RL that helps agents to find
better teammates. In showing effectiveness of the model, we
design different scenarios and evaluate RL agents’ performance
versus other types.

TABLE I. COMPARISON AMONG RANDOM AGENTS’ BENEFITS, RLS’ BENEFITS
AND SOCIAL WELFARE

NRA NRL RATT RLTT SW
0 64 0 21.05 1347
8 56 15.00 20.66 1277
16 48 12.69 21.12 1217
24 40 10.92 21.42 1119
32 32 10.00 22.16 1029
40 24 9.10 22.42 902
48 16 9.79 20.87 804
56 8 10.18 10.87 657
64 0 7.64 0 489

Fig. 3. Effect of number of Random agents on number of tracked targets by RLs and
Random agents and social welfare

Our simulator is written in JADE [20]; an agent-based
framework implemented in Java [21]. Each sensor and target is
designed as an independent thread, so we have a multi-threaded
environment which is essential in simulating a multi-agent
system [4]. Targets move in a random way in the environment.
On detecting a target in its vicinity, a sensor starts to make
a team in order to track it. As the environment is semi-
cooperative it should negotiate with its team candidates (the
negotiation protocol is monotonic concession [22]). If it selects
these candidates wisely, the negotiation process finishes in a
few rounds. On the other hand, RL agents set their concession
policy during the negotiation on the basis of RL results, and
give more concessions to the more valuable agents.

To test our theories in practice, we try various scenarios,
with different number of sensors (36, 49, 64 and 100) and
network configurations. In the first one, RL agents are put in
front of selfish (SF) agents. By SFs, we mean agents which get
help from others but never try to compensate. Figure 1 shows
how RLs can recognize these agents and eliminate them from
the network where, vertical and horizontal axis are the average
number of tracked targets and time respectively (polynomial
curves are fitted to both types’ numbers of tracked targets in
order to make comparison more easily). Every 20 RL rounds
(in the whole system) is considered as a time unit. At the
beginning, SFs’ tracked targets are a lot, since they just get
help from others while RLs are in exploration step and help
the system honestly. When RLs start to use Trust factor, SFs
are becoming known by them and gradually omitted from the
network, so their tracked targets decrease (time≈4) and in
contrast, RLs’ tracked targets increase. When RLs start to make
their final teams (time≈10) their tracked targets decrease3 to
some extent, but remains fixed afterward.

In the second experiment, competition of RLs versus
Random (RA) agents is tried. RAs are agents which want to
help the system as much as RLs, but their behavior in choosing
which agent they help or get help from is fully random. Figure

3This is due to using a pure strategy which reduces agents’ flexibility in
choosing suitable resources.

Fig. 4. Reduction of Euclidean distance of RL’s probability distributions to Distribution
6 (moving toward Nash Equilibrium)

2 shows results of this scenario, where the analysis is similar
to Figure 1: RAs are eliminated from the system by RLs4.

In another experiment, number of RAs from 0% of the
agents rises to 100% (total number of agents remains fixed)
and the average number of tracked targets by both RAs and
RLs (shown by RATT and RLTT respectively) and also the
social welfare5 (SW) are monitored. Table I and Figure 3 show
the results6, where NRA and NRL represent the number of
RAs and RLs respectively. In Figure 3, vertical axis is the
average number of tracked targets and the horizontal axis is
the percentage of RAs in the network. As NRA rises, SW
decreases since RAs’ random behavior prevent them to be
good replacements for deleted RLs, and the network, even after
detecting many targets, cannot monitor them (needed teams are
not formed on time in many cases). When the NRL decreases
to 25%, RLTT starts to reduce severely, because RAs are not
good substitutions for their omitted RL teammates.

The most surprising point is about the difference between
RLTT and RATT when the network contains just one type,
as RLTT is greater than RATT almost three times! Note that
in this case RAs are not isolated by RLs, and they decide to
help each other as much as RLs (the mathematical expectation
of the number of times they decide to help the system is the
same for both types) and this huge difference in utilities shows
effectiveness of our method.

Another point is about RATT which decreases as NRA
increases, and we can tell two reasons for that: first, by
increasing the number of RAs, RLs’ population decreases.
This is not a good situation for RAs since they lose some
agents’ help, before being known by them (when RLs are
in exploration step), as RLs help them more than their own
type by their steady behavior in these moments. Second, by
increasing NRA, in average, RAs detect less targets in the
environment and this leads RATT reduces (We put mean
density of targets fixed in all of the runs). However, when
NRA reaches more than 60% of the agents, RATT starts to
increase since they have enough power to not being isolated
by RLs (RLs are in the minority in this situation).

In another experiment, the network contains just RLs (with
pure strategies). Our aim is to test whether or not RLs’
belief distributions over their neighbors approach to Probability
Distribution 6 (which shows they move toward NE). Figure 4
demonstrates that Euclidean distance of RLs’ distributions to

4In this scenario, the number of RAs is 1/3 of all agents and k=5
5Here social welfare is defined as the total number of tracked targets by

the system. We want to use more complicated functions for the future.
6In order to track the trend more easily, we divide social welfare by the

total number of agents in Figure 3.

TABLE II. COMPARISON BETWEEN MIXED-STRATEGY AND PURE-STRATEGY
RLS’ BENEFITS

Rejection Tracking Targets Helping Others
Pure 13390 10.80 43.31
M7 10162 26.36 77.22
M6 10845 11.85 55.03
M6&7 10422 20.92 68.89

Fig. 5. Comparison between Mixed-strategy and Pure-strategy agents’ gains from the
system

Distribution 6 decrease as the time passes and this indicates
the system moves toward stability (NE)7.

The last experiment is about a network with pure-strategy
RL agents (PRLs) and mixed-strategy RL agents (MRLs). By
MRLs we mean some agents which make teams with k + r
agents while needing k resources, but choosing k elements
from this set in a fully random manner. Although, having
k+r friends makes MRLs more powerful than PRLs, it forces
them to use more resources, and thus, this strategy adapts with
stronger agents (which have enough resources). Our goal by
this scenario is to offer a mechanism by employing it, agents
which spend more resources to help others, can get more in
return and the results show effectiveness of this plan. In our
scenario, we set k = 4 and r = 3. However, some agents
cannot find 7 members to make teams with them (they have
not been accepted by 7 agents), and have to acquiesce to
6-member teams. Table II shows the results of running this
scenario several times and getting an average between these
runs (the numbers of both types are equal in the network). By
M7, M6 and M6&7 we mean MRLs which make 7, 6 and 6 or
7-member teams respectively. As you can see, M7s help the
system 19% more than PRLs, but get help from the system
32% more, and the difference between these two numbers
(i.e. 13%) can be regarded as the pure revenue of MRLs from
applying a mixed strategy policy rather than a pure one (this
can be seen as the synergy of making bigger groups too). In
Table II, Rejection shows the number of times each type gets
rejection from its neighbors (in the whole time of system) when
needing their help, and again M7s win PRLs. Figure 5 displays
a better comparison between just M7s and PRLs. The standard
deviation is another factor that again in tracking targets (getting
help from the system) M7s surpass PRLs since they have
a standard deviation equal to 1.00 rather than PRLs whose
standard deviation equals 1.63, and this shows the system is
more reliable for M7s.

VII. CONCLUSION AND FUTURE WORK

In this paper, a distributed method on the basis of rein-
forcement learning (RL) is presented which helps agents to
find better teammates and encourages truthful and cooperative
behaviors in the system.

To test our mechanism in practice, it is applied to a
distributed sensor network designed for target tracking. Sim-

7We set P = 1
2
(PQ+PC) and then normalize it in this experiment.

ulation results show effectiveness of the mechanism since RL
agents surpass selfish and random-policy agents. In addition,
it is shown that by using a mixed-strategy, RL agents can get
more resources from the system in the need time and enjoy
further synergy produced by forming larger teams.

for the future, we aim to use mixed-strategy RL agents to
receive more accuracy from the system. We also want to try
more complicated social welfare, utility and cost functions, and
design experiments for evaluating roles of Balance and Trust
factor independently in the system.

REFERENCES

[1] X. S. Zhang and V. Lesser, “Meta-level coordination for solving
distributed negotiation chains in semi-cooperative multi-agent systems,”
Group Decision and Negotiation, vol. 22, pp. 681–713, mar 2012.

[2] A. Rogers, R. K. Dash, N. Jennings, S. Reece, and S. Roberts,
“Computational mechanism design for information fusion within sensor
networks,” in Proc. IEEE International Conference on Information
Fusion, Florence, Italy, jul 2006, pp. 1–7.

[3] R. K. Dash, S. D. Ramchurn, and N. R. Jennings, “Trust-based
mechanism design,” in Proc. IEEE International Joint Conference on
Autonomous Agents and Multiagent Systems, vol. 2, New York, NY,
USA, jul 2004, pp. 748–755.

[4] M. Wooldridge, An Introduction to Multiagent Systems. UK: Wiley,
2008.

[5] R. Dash, A. Rogers, N. Jennings, S. Reece, and S. Roberts, “Constrained
bandwidth allocation in multi-sensor information fusion: A mechanism
design approach,” in Proc. IEEE International Conference on Informa-
tion Fusion, vol. 2, Philadelphia, PA, USA, jul 2005, pp. 1185–1192.

[6] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” Acm
Computing Surveys (CSUR), vol. 38, pp. 1–45, dec 2006.

[7] M. E. Gaston and M. desJardins, “Agent-organized networks for dy-
namic team formation,” in Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, Utrecht,
Netherlands, jul 2005, pp. 230–237.

[8] R. Katayanagi and T. Sugawara, “Efficient team formation based on
learning and reorganization and influence of communication delay,”
in Proc. IEEE International Conference on Computer and Information
Technology (CIT), Paphos, Cyprus, aug & sep 2011, pp. 563–570.

[9] J. Ahn, X. Sui, D. DeAngelis, and K. S. Barber, “Identifying beneficial
teammates using multi-dimensional trust,” in Proc. International joint
conference on Autonomous agents and multiagent systems-Volume 3,
may 2008, pp. 1469–1472.

[10] C. E. Pippin and H. Christensen, “Cooperation based dynamic team
formation in multi-agent auctions,” in Proc. SPIE Defense, Security,
and Sensing, Maryland, US, may 2012.

[11] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence, vol. 4, pp. 237–
285, may 1996.

[12] R. Glinton, P. Scerri, and K. Sycara, “Agent-based sensor coalition
formation,” in Proc. IEEE International Conference on Information
Fusion, Cologne, Germany, jun 2008, pp. 1–7.

[13] B. Horling, R. Mailler, and V. Lesser, “A case study of organizational
effects in a distributed sensor network,” in Proc. IEEE International
Conference on Intelligent Agent Technology (IAT), Beijing, China, sep
2004, pp. 51–57.

[14] L. Soh and X. Li, “A learning-based coalition formation model for
multiagent systems,” in Proc. ACM International Joint Conference on
Autonomous Agents and Multiagent Systems, Melbourne, Australia, jul
2003, pp. 1120–1121.

[15] G. Mainland, D. Parkes, and M. Welsh, “Decentralized, adaptive re-
source allocation for sensor networks,” in Proc. USENIX Symposium on
Networked Systems Design & Implementation (NSDI), vol. 2, Boston,
MA, USA, may 2005, pp. 315–328.

[16] T. Le, T. Norman, and W. Vasconcelos, “Adaptive negotiation in
managing wireless sensor networks,” in Proceedings of the 13th Inter-
national Conference on Principles and Practice of Multi-Agent Systems,
Kuching, Sarawak, Malaysia, sep 2012, pp. 121–136.

[17] R. Dash, “Distributed mechanisms for multi-agent sys-
tems: Analysis and design,” Ph.D. dissertation, Univ. of
Southampton, Southampton, jun 2006. [Online]. Available:
http://eprints.soton.ac.uk/id/eprint/262727

[18] S. Ramchurn, C. Mezzetti, A. Giovannucci, J. A. Rodriguez, R. K. Dash,
and N. R. Jennings, “Trust-based mechanisms for robust and efficient
task allocation in the presence of execution uncertainty,” Journal of
Artificial Intelligence Research, vol. 35, pp. 119–159, jun 2009.

[19] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univer-
sity Press, 1957.

[20] TelecomItalia. (2012) Java agent development framework (jade).
[Online]. Available: http://jade.tilab.com/

[21] F. Bellifemine, A. Poggi, and G. Rimassa, Developing Multi-agent
Systems with JADE. Chichester, England: John Wiley & Sons, 2001.

[22] J. S. Rosenschein and G. Zlotkin, Rules of Encounter: designing
conventions for automated negotiation among computers. Cambridge,
MA: The MIT Press, 1994.

