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A significant body of work in multi-agent systems over more than two decades has focused on multi-agent
coordination (Levesque et al., 1990). Many challenges in multi-agent coordination can be modeled as Dis-
tributed Constraint Optimizations (DCOPs). Many complete and incomplete algorithms have been introduced
for DCOPs, but complete algorithms are often impractical for large scale and dynamic environments which
lead to the study of incomplete algorithms. In both complete and incomplete algorithms, computational cost is
a major concern. Different approaches are introduced to solve this problem and improve existing algorithms.
The main contribution of this paper is to decrease computational cost of DALO-¢ (Distributed Asynchronous
Local Optimization) algorithm by introducing a new algorithm to find the best solution. This new algorithm is
called Genetic Distributed Asynchronous Local Optimization (GDALO-t). GDALO-t is an effective method to
reduce computational load and power consumption in implementation. This paper, under various assumptions,

presents an analysis of this new algorithm.

1 INTRODUCTION

Multi-agent systems are a popular way to model com-
plex interactions and coordination required to solve
distributed problems. A multi-agent system is a
network of cooperative agents used to perform dis-
tributed computation. Networks of cooperative agents
are heterogeneous and not all agents have direct com-
munication link to one another. Additionally, infor-
mation is distributed throughout the network either
due to privacy concerns or impractically of centraliz-
ing. In this network each agent is autonomous entity
with local information and has ability to perform an
action in cooperative situations in which agents col-
laborate to achieve a common goal.

Agents need to coordinate their activities to ac-
complish their collective goals. Distributed Con-
straint Optimization (DCOP) is a common formalism
to represent multi-agent systems in which agents co-
operate to optimize a global objective (Mailler and
Lesser, 2004), (Petcu and Faltings, 2005). Distributed
Constraint Optimization (DCOP) has been applied to
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different domains. DCOPs are able to model the task
of scheduling meetings in large organizations (Mah-
eswaran et al., 2004). DCOPs are also able to model
the task of allocating sensor nodes to targets in sen-
sor networks (Modi et al., 2005). Finally, DCOPs
are able to model the task of coordinating teams
of unmanned vehicles in disaster response scenarios
(Chapman et al., 2009).

There are two main categories for DCOP algo-
rithms, complete and incomplete algorithms. Com-
plete algorithms always find a configuration of vari-
ables that maximizes the global objective func-
tion. Adopt (Asynchronous Distributed OPTimiza-
tion) (Modi et al., 2005) and DPOP (Dynamic Pro-
gramming OPtimisation) (Petcu and Faltings, 2005)
are two well known complete algorithms. In con-
trast, incomplete algorithms find semi optimal so-
lutions and do not guarantee to achieve global op-
timal solution. Algorithms such as Max-Sum (Aji
and McEliece, 2000), Distributed Arc Consistency
(Cooper et al., 2007) and KOPT (Katagishi and
Pearce, 2007) are in this category.
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k-optimal algorithms guarantee to provide solu-
tions that cannot be improved by any group of k
or fewer agents changing their decision. Many in-
complete algorithms such as MGM1 (Yokoo and Hi-
rayama, 1996) and DSA1 (Fitzpatrick and Meertens,
2003) yield 1-optimal solutions. KOPT algorithm is
the only incomplete algorithm which works for ar-
bitrary k (Katagishi and Pearce, 2007). DALO-f is
a novel asynchronous incomplete algorithm which
works based on 7-distance optimality is introduced in
(Yin et al., 2009). In this algorithm each agent forms
a group with other agents with a distance of ¢ hops
(Kiekintveld et al., 2010)(Yin et al., 2009).

In both KOPT and DALO-t algorithms, a com-
plete DCOP algorithm is used to find the best value
for each agent in a group. The computational com-
plexity of complete algorithms is exponential in the
number of variables n, since constraint optimization
is known to be NP-hard (Modi et al., 2005). It is hard
for complete algorithms to scale up because the com-
putation burden might increase exponentially by in-
creasing number of variables (Yin et al., 2009). Using
t-distance optimality criterion to form groups, creates
groups with large size in dense graph. Since, in each
subgraph in DCOP a complete algorithm is applied,
using a complete algorithm in each group is not tol-
erable from computational point of view. A new evo-
lutionary algorithm is introduced in this paper which
puts this problem right and finds the best solution in
each subgraph in polynomial time.

The structure of the paper is as follows: In sec-
tion 2, formal definitions of DCOP and z-distance op-
timality solutions are presented. In section 3, DALO-
t algorithm and its main issues are described. The
new algorithm is introduced in section 4. Experimen-
tal results of new algorithm and its comparison with
DALO-t algorithm is depicted in section 5. Finally,
conclusion and future work are presented in section
6.

2 BACKGROUND

In this section, we will provide some basic definitions
about DCOP and ¢-distance optimality.

2.1 Distributed Constraint
Optimization

A DCOP is defined by a set of variables

V ={vi,...,v,}, a set of discrete finite domains for
each variable D ={D,,...,D,} and a set of con-
straints C = {c1,...,¢4}. Each variable is controlled

by a separate agent that can communicate with other

agents. A joint assignment 4 = {ay,...,a,} specifies
a value for each variable, in which a; is the value of
agent i. Each constraint includes a set of variables
and based on the values which each agent chooses,
a constraint defines a real-valued cost. In this paper
only binary constraints are considered. It means that
each constraint has two variables. Thus, for each pair
of variables v;,v;, we will be given a cost function
Fij : D; x Dj — R which determines the value of
a constraint. If there is no constraint between v;,v;,
function ¥ will be 0. A cost function takes values
of variables as an input and returns a value as a
non-negative number for a constraint.

The goal is to choose values for variables such that
a given objective function is maximized. The objec-
tive function is described as the sum over a set of cost
functions, or valued constraints. Thus the objective is
to maximize:

RA) =Y, Fjla,a))
(V,’,Vj)E'V
Where v; < a;,v; < a;j,a;,a; € A (1)

R(A) is a solution quality for a joint assignment
A (Pearce et al., 2007)(Modi et al., 2005).

Figure 1 shows an example DCOP with 5 vari-
ables and 6 constraints with identical cost func-
tion. The optimal assignment for this DCOP is A4 =
(1,1,1,1,1,1).

Figure 1: An example DCOP with five binary variables.
Each constraint has the same cost function.
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2.2 t-distance Optimality

Definition 1. For two different assignments A and
a':

D(AAY={vieV |ai#d, vieai € Avi—d, €A}

2

In other words, D is a deviating group between
two assignments 4 and A'.

Definition 2. For a pair of variables v; and v;j, let
T (vi,vj) be the shortest distance between them in
the constraint graph. Let ®;(v;) = {v;|T (vi,v;) <

1,vi,vj € V} denotes a set of variables that can be
reached from v; within t hops.
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Definition 3. A DCOP assignment 4 is t-distance op-
timal if R (A) > R () for all A', where D(A,4") C
D, (v;) for some v; € V (Kiekintveld et al., 2010)(Yin
et al., 2009).

Example:  Consider the graph in Figure 1.
Given ¢t = 1, 1-distance groups for variable 1 will
be: @;(vi) = {vi,v2,v3}, In this example 4 =
(0,0,0,0,0) with R(4) = 6 is O-distance optimal.
Assignment A4 is 0-distance optimal because if every
agent changes its value the solution quality will de-
crease. Assignment A4 is 1-distance optimal too. This
assignment is not 2-distance optimal because there is
an assignment 4’ = (1,1,1,1,1) with R (4') = 18
which its utility is more than 4.

3 DALO-T ALGORITHM
AND ISSUES

DALO-t algorithm, as an incomplete algorithm, was
introduced by Yin. It is an asynchronous algorithm
for DCOP based on z-distance optimality (Yin et al.,
2009).

DALO-t algorithm has three phases. In phase one,
each agent sends a message containing all its con-
straints to agents in a distance of ¢ hops. Then, it
broadcasts its initial value to a distance of 7 4 1 hops
in a separate message. In phase two, based on infor-
mation gathered in the previous phase, all the leaders
compute a new optimal assignment by using a cen-
tralized variable elimination algorithm in parallel. In
phase three, if the new assignment improves the solu-
tion quality, the group leader attempts to set the new
assignment. When all the leaders try to set their as-
signments, there will be conflicts among overlapping
groups, which are resolved by an asynchronous lock-
ing and commitment protocol.

DALOQO-¢ Issues Although DALO-f is an effective
algorithm to solve DCOP problems, it suffers from
some drawbacks. In z-distance optimality, the num-
ber of optimization groups is fixed, but the size of
t-distance groups can be very large, particularly in
dense graphs (Yin et al., 2009). Using distance as
a criterion to create groups may produce groups with
large number of nodes; especially, when there are hub
nodes with many connections or subgraphs which are
densely connected.

As it is explained in DALO-¢ algorithm in phase
two, a complete algorithm is used to solve DCOP. A
leader node uses a centralized variable elimination al-
gorithm to solve the subproblem for the local group
which is a complete algorithm. The computational
complexity of complete algorithms is exponential in
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the number of variables. On the other hand, by in-
creasing ¢, the number of agents in a group will in-
crease and using a complete DCOP solver will not
be tolerated from size and space point of view. To
solve this problem, instead of using a centralized vari-
able elimination algorithm, we use a genetic approach
in phase two. A DCOP is an optimization problem,
and nowadays, evolutionary algorithms, particularly
Genetic Algorithms (GAs), are considered as one of
the best known algorithms to solve optimization prob-
lems.

4 ALGORITHM DESCRIPTION

In this section the overview of genetic algorithms and
the GDALO-t algorithm are given.

4.1 The Genetic Algorithm Overview

Genetic Algorithms (GA) are adaptive methods and
have been applied to optimization problems in many
fields (Beasley et al., 1993). Algorithm is started
with a set of solutions (represented by chromosomes)
called population. Solutions from one population are
taken and used to form a new population. This is mo-
tivated by a hope, that the new population will be bet-
ter than the old one. Solutions which are selected to
form new solutions (offspring) are selected accord-
ing to their fitness - the more suitable they are the
more chances they have to reproduce. This is repeated
until some condition (for example number of popula-
tions or improvement of the best solution) is satisfied.
Before a genetic algorithm is applied to a distributed
constraint optimization problem, we show how chro-
mosomes are represented and how the fitness of chro-
mosomes are evaluated.

In this paper, each assignment for a group is con-
sidered as a chromosome. For group 1 in Figure 1,
A =(0,1,0) is a possible assignment and also a chro-
mosome in genetic approach in which g; indicates the
value for the agent i. The fitness of a chromosome is
evaluated by a fitness function. The fitness function
which is used in this paper to evaluate the fitness of
chromosome is the solution quality. Solutions with
high quality are considered the fittest ones.

4.2 The Genetic Approach for DCOP

The GDALO-¢ algorithm is a new method to solve
distributed constraint optimization problems. This al-
gorithm has three phases.
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4.2.1 Initialization

At first, every agent sends a message containing all
its constraints to all agents which are in distance of ¢
hops from it. Then, it chooses an initial value from
its domain and broadcasts it to agents in distance of
t +1 hops. In this phase, a leader starts to construct
its group. Given ¢, all the agents whose distance of
center node are lower than ¢ will be a member of the
group. The additional hop in sending a message is
for boundary nodes. The nodes in the boundary of
a group are considered static in computing the best
assignment.

4.2.2 Computing the Best Assignment

In this phase, the leader of each group calculates the
best possible assignment by which the quality is max-
imized. In this phase, every leader utilizes genetic
approach to find the best assignment. The genetic ap-
proach has four phases:

o Initialization. In this phase, an initial population
is generated. This population is a set chromo-
somes (possible assignment for each group). The
chromosomes are equal in size with the group and
are a string of binary values. Generally, the popu-
lation is generated randomly, and is selected from
all possible solutions for a problem.

e Selection. To generate the next population, a set
of solution is selected from existing population.
Generally, the main criterion for selection is fit-
ness and individuals which are high fit will be se-
lected to generate the next generation. Using solu-
tion quality as a criterion a proportion of current
population with high solution quality will be se-
lected to generate the next population. However,
the stochastic method is used in this paper. By us-
ing this method there will be a chance for less fit
solutions.

e Reproduction. In this phase the next population
is generated. Two chromosomes are selected to
generate new chromosomes. Crossover and mu-
tation are two basic operators of GA to generate
new chromosomes for the next population. We
use single point crossover in our implementation
(Mitchell, 1998) and a mutation operator with a
mutation probability of 0.007 to mutate values for
an individual.

o Chromosome Evaluation. In this phase, newly
generated offsprings are added to the population,
then the worst individuals are removed from the
population. Depending on whether they are better
than the worst individuals in the population, the

new offsprings may, or may not, survive to join
the new population. Mainly, some solutions with
lower utility are selected since sometimes using
these solutions to generate offsprings leads to high
fit chromosomes.

Population generation is repeated until the algorithm
converges to the optimal solution.

4.2.3 Implementing Assignments

Each agent belongs to different groups and receives
various assignments from different leaders. To
resolve the conflict among overlapping groups, a
method is used for resolving conflict described in
DALO-t algorithm (Yin et al., 2009).

5 EXPERIMENTAL RESULT

To evaluate the proposed algorithm, we use three dif-
ferent metrics. The first is the Number of Rounds
(NR) which is the dominant metric for evaluation
of DCOP algorithms and it is used in many pa-
pers (Yokoo et al., 1998), (Kiekintveld et al., 2010),
(Davin and Modi, 2005). The second metric is Round
Based Runtime (RBR) that measures the the time re-
quired for computation and communication in each
round (Davin and Modi, 2005). The third metric is
the quality of solution which is introduced in sec-
tion 2 and it is also a prominent metric to evalu-
ate DCOP algorithms (Katagishi and Pearce, 2007),
(Pearce et al., 2007). The main contribution of this
work is to reduce the RBR. In the following, we
provide the experimental results for the DALO-¢ and
GDALO-¢ algorithms applied to graphs with different
structures. Structure of graphs are chosen randomly
and no special structure is used to prove the efficiency
of the proposed algorithm for any structure. Our
experiments use different graphs with sizes of n =
30,60,80. The density of graphs is considered D =
{0.11,0.12,0.14,,0.16,0.2,0.24,0.33,0.49} and dis-
tance of ¢ for creating groups is considered r = 1,2.
Each random graph used in the experiment is shown
by a tuple (n,D,r). For each tuple (n, D,t), we cre-
ate 5 different structures with size of n, density of D,
and distance of 7. The results which are shown for
each tuple are the average of the results for 5 different
structures.

We use the same initial assignment for both algo-
rithms and the number of rounds is considered same
for two algorithms. The stopping criterion used to ter-
minate the running of the algorithms is the number of
rounds.
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The main goal of this paper is to show that the
required time to compute the best assignment is de-
creased by our evolutionary approach. To have a fair
comparison, it should be proved that the other param-
eters do not change by using our new approach. The
main concern is solution quality. It needs to be proved
that by decreasing the time, the quality of solution
will not change too much. It will be shown in the
the following section that the solution quality dose not
change very much by GDALO-# in comparison with
DALO-¢. As the experimental results show, GDALO-
t decreases the computational cost and it can be con-
cluded that our proposed algorithm is more efficient
than DALO-¢ algorithm.

<-DLAO_{ (=)
500 ~=-DLAO_t (t=2)
~=GDLAO_{ (1)
450 ==GDLAO{ (==2)

Computational Cost
n
R
3

0.11 012 014 016 0.2 024 033 049

Density

Figure 2: Quality of solution for graphs with size 30, differ-
ent structures, densities and ts.

5.1 Solution Quality (SQ)

To compare the algorithms, the quality of solution for
DALO-t and GDALO-¢ are evaluated. Figure 2 de-
picts the results for n = 30. As it is shown in the re-
sults, a little difference is observed between quality of
solutions of GDALO-¢ and DALO-¢ algorithms. The
difference among solutions quality is various for dif-
ferent graphs; in some cases, the difference is 2%, in
some graphs is 3%, but the difference does not ex-
ceed 5%. On average, the difference among the solu-
tion quality of these two algorithms are 4.42%; there-
fore, it can be ignored. For example, for the tuple
(30,0.2,1), the solution quality is 168 for DALO-¢
and is 164 for GDALO-t. These results show that
GDALO-t algorithm finds the optimal solution like
DALO-t algorithm in many cases.

5.2 The Computational Cost (CC)

As it is described RBR is used to compare compu-
tational cost. The results for graph with n = 80 is
depicted in Figure 3. For example, for the tuple
(80,0.33,2), the elapsed CPU time is 4700 seconds
for DALO-t whereas this parameter for GDALO-¢ al-
gorithm is only 3153 seconds. It is obvious that using
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Figure 3: Computational cost to solve DCOP for graphs
with size 80, different structures, densities and t.

GDALO-t, the computational cost decreases in con-
siderable amount. As the size of active agents in a
group increases, the elapsed CPU time of DALO-¢ al-
gorithm increases exponentially, but using GDALO-¢
algorithm, the time increases polynomially. The dif-
ference between the result of running two algorithms
for t =1 and t = 2 makes the efficiency of the algo-
rithm more clear. In the graph with density of 0.2
the size of groups is more than graphs with density
of 0.11, and computing all the possible assignments
and finding the best assignment will be complicated in
dense graphs. The problem will be more complicated
considering ¢t = 2 because by increasing ¢ the size of
groups in the graph will increase, and consequently,
the number of possible assignments increases. Ob-
viously, the difference between computational cost
of DALO-t and GDALO-¢ for a graph with the tu-
ple (80,0.2,2) is more than a graph with the tuple
(80,0.11,1) as it is depicted in Figure 3.

The other important point which is clear in the re-
sults is that in dense graphs the proposed algorithm is
more efficient. As it is shown in Figure 3 for the graph
with size n =80 and t = 1 and density D = 0.33 com-
putational cost is decreased by 59% and for the the
same graph with density D = 0.11 it is decreased by
38%.

5.3 Computational Cost vs Solution
Quality

To have a complete comparison between DALO-¢ and
GDALO-t algorithms, computational cost and solu-
tion quality should be used together in the compari-
son. The results for different tuples are shown in Ta-
ble 1. The average difference is shown for both algo-
rithms. The quality of GDALO-t algorithm solutions
is 4.42% lower than DALO-¢ algorithm solutions on
average. On the other hand, the computational cost of
GDALO-t algorithm is 43% lower than DALO-¢ al-
gorithm on average.
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Table 1: Results for different tuples using DALO-¢ and
GDALO-z.

Graph (n,D,1) DALO- algorithm | GDALO-7 algorithm

(SQ, CC) (SQ,CC)
(30,0.11,1) (89,15) (88.9)
(30,0.2,1) (168 42) (164 ,29)
(30,0.24,2) (215,340) (210,220)
(30,0.49,1) (412,310) (400,162)
(60,0.12,1) (428,81) (411,24)
(60,0.2,1) (670,170) (650 ,89)
(60,0.33,1) (1130 ,590) (1110 ,279)
(60,0.49,2) (1765 ,3800) (1600 ,2300)
(80,0.14,1) (855,166) (830,109)
(80,0.2,1) (1220,480) (1170,279)
(80,0.33,1) (2050,1209) (2050,494)
(80,0.33,2) (2098,4700) (1900,3153)
Average Discrepancy (0.0442,0.434)

Obviously, computational cost has direct influence
on quality of solution. By decreasing the compu-
tational cost, the quality of solution will decrease.
Therefore, we should find a balance between the qual-
ity of solution and the cost consumed to reach to a
special quality.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, instead of using a complete algorithm
in each group in DCOP, a genetic algorithm is used.
As it is shown in the results, the quality of solutions
achieved by complete algorithm is more than genetic
algorithm. The quality of solutions achieve by genetic
algorithm is 4.42% lower than DALO-¢ algorithm on
average. This result is predictable because complete
algorithms find the optimum solutions while the ge-
netic algorithm finds the semi-optimal solutions. In
contrast, the computational cost decreases consider-
ably by using genetic approach. The computational
cost decreases 43% by using GDALO-. It can be con-
cluded that our algorithm is more applicable for real-
time applications. Decreasing the number of mes-
sages passed to solve DCOP is a key avenue for future
work.
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