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Abstract—A significant body of work in multiagent systems
over more than two decades has focused on multi-agent
coordination (1). Many challenges in multi-agent coordina-
tion can be modeled as Distributed Constraint Optimizations
(DCOPs). Many complete and incomplete algorithms have
been introduced for DCOPs but complete algorithms are
often impractical for large-scale and dynamic environments
which lead to study incomplete algorithms. Some incomplete
algorithms produce k-optimal solutions; a k-optimal solution is
the one that cannot be improved by any deviation byk or fewer
agents. In this paper we focus on the onlyk-optimal algorithm
which works for arbitrary k, entitled as KOPT. In both
complete and incomplete algorithms, computational complexity
is the major concern. Different approaches are introduced
to solve this problem and improve existing algorithms. The
main contribution of this paper is to decrease computational
complexity of KOPT algorithm by introducing a new method
for selecting leaders which should assign new values to a group
of agents. This new approach is called Partial KOPT (PKOPT).
PKOPT is an effective method to reduce computational load
and power consumption in implementation. This paper under
various assumptions presents an analysis of sequential and
stochastic PKOPT algorithms.

Keywords-Multi Agent Systems; Distributed Constraint Op-
timization (DCOP); k-optimality

I. I NTRODUCTION

Multi-agent systems are a popular way to model complex
interactions and coordination required to solve distributed
problems. A multi-agent system is a network of cooperative
agents used to perform distributed computation. Networks
of cooperative agents are heterogeneous and not all agents
have direct communication link to one another. Additionally,
information is distributed throughout the network either due
to privacy concerns or impractically of centralizing. In this
network each agent is autonomous entity with local infor-
mation and has ability to perform an action in cooperative
situations in which agents collaborate to achieve a common
goal.

Agents need to coordinate their activities to accomplish
their collective goals. Distributed Constraint Optimization
(DCOP) is a common formalism to represent multi-agent
systems in which agents cooperate to optimize a global ob-

jective (2), (3). Distributed Constraint Optimization (DCOP)
has been applied to different domains. DCOPs are able to
model the task of scheduling meetings in large organizations,
where privacy needs make centralized constraint optimiza-
tion difficult (4). DCOPs are also able to model the task
of allocating sensor nodes to targets in sensor networks,
where the limited communication and computation power
of individual sensor nodes makes centralized constraint
optimization difficult (5). Finally, DCOPs are able to model
the task of coordinating teams of unmanned vehicles in
disaster response scenarios, where the need for rapid local
responses makes centralized constraint optimization difficult
(6).

There are two main categories for DCOP algorithms,
Complete and incomplete algorithms. Complete algorithms,
are algorithms that always find a configuration of variables
that maximizes the global objective function. Adopt (Asyn-
chronous Distributed OPTimization) (5) and DPOP (Dy-
namic Programming OPtimisation) (3) are two well known
complete algorithms. In contrast, incomplete algorithms find
semi optimal solutions and do not guarantee to achieve
global optimal solution. Algorithms such as Max-Sum (7),
Distributed Arc Consistency (8) and KOPT (9) are in this
category.

k-optimal algorithms guarantee to provide solutions that
cannot be improved by any group ofk or fewer agents
changing their decision. Many incomplete algorithms such
as MGM1 (10) and DSA1 (11) yield 1-optimal solutions.
The other version of MGM1 is MGM2 (12) which pro-
vides 2-optimal solutions. KOPT algorithm (9) is the only
incomplete algorithm which works for arbitraryk. The main
focus of this paper is on KOPT algorithm. In spite of many
advantages of KOPT algorithm, it suffers from a major
problem like other DCOP algorithms. In some environments
with high degree of interactions, computational complexity
of KOPT algorithm is not tolerable. In this paper we propose
an algorithm that decreases the computational complexity in
substantial amount.

The structure of the paper is as follows: In section II,
formal definitions of DCOP andk-optimal solutions are



presented. In section III, KOPT algorithm and its main issues
are described. Sequential and stochastic PKOPT algorithms
and their main issues are discussed in section IV. In section
V, computational complexity of sequential and stochastic
PKOPT algorithms are analyzed. Finally, experimental re-
sults of new algorithms and their comparison with KOPT
algorithm are depicted in section VI.

II. BACKGROUND

In this section, we will provide some basic definitions
about DCOP andk-Optimality.

A. Distributed Constraint Optimization (DCOP)

A DCOP is defined by a set of variables
V = {v1, . . . , vn}, a set of discrete finite domains for
each variableD = {D1, . . . , Dn} and a set of constraints
C = {c1, . . . , cq}. Each variable is controlled by a separate
agent that can communicate with other agents. A joint
assignmentA = {a1, . . . , an} specifies a value for each
variable, in whichai is the value of agenti. Each constraint
includes a set of variables and based on the values which
each agent chooses, a constraint defines a real-valued cost.
In this paper only binary constraints are considered. It
means that each constraint has two variables. Thus, for each
pair of variablesvi, vj , we will be given a cost function
Fij : Di × Dj −→ R which determines the value of a
constraint. If there is no constraint betweenvi, vj , function
F will be 0. A cost function takes values of variables as
input and returns a value as a non-negative number for a
constraint. Utility of agenti for assignmentA is:

Ui(A) =
∑
vj∈V

Fij(ai, aj)

Wherevi ← ai, vj ← aj , ai, aj ∈ A (1)

It means that the utility ofith agent is the sum of the cost
functions of all the constraints which an agent belongs to.

The goal is to choose values for variables such that a given
objective function is maximized. The objective function is
described as the sum over a set of cost functions, or valued
constraints. Thus the objective is to maximize:

R(A) =
∑

(vi,vj)∈V

Fij(ai, aj)

Wherevi ← ai, vj ← aj , ai, aj ∈ A (2)

R(A) is a solution quality for a joint assignmentA (13)
(5).

Figure 1 shows an example DCOP with6 variables and
7 constraints with identical cost function.
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Figure 1. An example DCOP with six binary variables. Each constraint
has the same cost function.

B. k-Optimality

Let D(A,A′) denotes a set of variables with different
values inA andA′. A DCOP assignmentA is k-optimal
if R(A) ≥ R(A′) for all A′ for which | D(A,A′) |≤ k.
Where| D | denotes the cardinality of setD (13).

Example:Consider the graph in Figure 2 in whichV =
{v1, v2, v3, v4} are variables with binary domain. In this
example constrains arec1 = {v1, v2}, c2 = {v1, v3}, c3 =
{v2, v4}, c4 = {v3, v4}. A1 = {0, 0, 0, 0} is a 1-optimal
assignment withR(A1) = 4. This assignment is1-optimal
because no unitary change in assignmentA1 improves the
reward. But it is not2-optimal assignment because if one
pair of agents change their values simultaneously to1 the
solution quality will increase. AssignmentA2 = {1, 1, 1, 1}
with R(A2) = 8 is 4-optimal assignment and also is the
best assignment.

 

 

Fi,j Vj Vi 

1 0 0 

0 1 0 

0 0 1 

2 1 1 

Figure 2. An example DCOP with four binary variables. Each constraint
has the same cost function.

There is a detailed investigation in the field ofk-optimal
algorithms. Pearce and Tambe presented the first known
guarantees on solution quality fork-optimal solutions (14).
They provided reward and structure-independent guarantee
on solution quality for anyk-optimal DCOP assignment.
In addition, tighter guarantee for ring and star graphs were
presented in their work.

Two main properties ofk-optimal solutions are introduced
in (15). The first one is the worst-case guarantee on the
solution quality ofk-optima in a DCOP. The second one
is the worst-case guarantee on the number ofk-optimal
solutions that can exist in a DCOP. A close view to the
k-optimal solution set can be found in (15), in which using
coding theory they provide an upper bound fork-optimal
solution set.



III. KOPT ALGORITHM

KOPT algorithm as an incomplete algorithm is introduced
by Katagishi which is the first DCOP incomplete algorithm
for arbitrary k (9). This algorithm consists of3 phases. In
phase1, every agent gathers information from its neigh-
bors. In phase2, every agent form a group randomly and
calculates the best value assignment to its group members
by using the information acquired in phase1. Then every
agent broadcasts the assignment to all its neighbors. In phase
3, every agent selects the best value assignment which has
the highest utility among the assignments sent by its nearby
agents. If all the agents in the assignmentA know that all the
agents inA have chosenA, they will change their variables
according toA. Otherwise, none of the agents inA will
move. These three phases make up one round.

The most important point of this algorithm is to choose
group members. How to choose group members is important
to guarantee thek-optimality of the solution. Each group
has a leader which locates at the center of the group. Each
group includesk active agents and some static agents. Active
agents are the agents which can change their value to achieve
the highest utility in their groups. Static agents are located
at boundary of groups and they cannot change their values
to ensure that the global utility is always strictly increasing
in KOPT.

Based on KOPT algorithm each agent starts from its
neighborhood and extends its group until it includesk active
agents. Each agent can form different groups, but according
to KOPT algorithm groups are selected randomly.

For the graph in Figure 1 andk = 2, groups will be
as follow. Leaders of groups are shown in bold and active
agents are in italic.

Group1 = {1, 2 , 3, 4, 5}
Group2 = {1,2, 3 , 5, 6}
Group3 = {2,3, 5, 6}
Group4 = {1 , 2,4, 5}
Group5 = {1, 2, 4 ,5, 6}
Group6 = {2, 3, 4, 5 ,6}

A. KOPT issues

Although KOPT is an effective algorithm to solve DCOP
problems, it suffers form some drawbacks. The first one is
that, for k < n (n is the number of agents) this algorithm
does not guarantee to obtain global optimal solution and
finding global optimal solution by this approach is possible
by increasingk which in return increases computational
complexity.

The second drawback is that in KOPT algorithm groups
are formed randomly for each agent. Hence there is no
pre specified method to choose the best group to reach
the best possible solution (9). Group formation is important
to guarantee thek-optimality of solution. Different group
formations can lead to different solutions. In other words,

groups in DCOP can be in a form which leads to solutions
with low quality.

The third, and in our opinion, the most important draw-
back is that all leaders start to calculate the best possible
assignment for their group members but, in the end of each
round, to avoid conflicts among leader assignments, some
of these leaders are chosen and their assignments are set.
It means that each agent belongs to different groups and it
should finally choose one of the assignment of the leaders.
Based on KOPT algorithm the best possible assignment is
chosen for each agent and other assignments are ignored. As
it is clear, finding the best assignment in each group needs
a large number of messages to be sent and received which
increases computational complexity.

Despite the recent improvements in KOPT algorithm,
solving DCOP in a fully connected network with large
number of agents is still a very challenging task. Specially, in
graphs such as mesh or complete structures, where network
has large number of agents and communications among
agents are hundred of thousands, KOPT algorithm cannot
converge after finite number of rounds. In this paper, we
present a generalization of KOPT algorithm to overcome
the third problem, by using two partial updating approaches.
Partial updating is an effective method to reduce the compu-
tational complexity while keep the solution quality almost
the same.

By using partial approach, complexity can be decreased
by dismissing leaders which their assignments will be ig-
nored in the end of each round. Consequently, there will be a
substantial decrease in computational complexity. However,
this approach reduces the computational complexity but may
increase the time of convergence.

IV. PARTIAL KOPT (PKOPT)ALGORITHMS

Based on our discussion from section III, in phase 2 of
KOPT algorithm all the leaders calculate a new assignment
for their group members whereas some of these assignments
will be ignored to avoid conflicts among leader assignments.
Hence, it is better to have some leaders not to compute new
assignments. To this end, permission to calculate new assign-
ment is granted to some leaders in each round. The leaders
which receive permission to compute new assignments are
called active leaders. It is worthwhile to mention that active
leaders are different from active agents. Active agents are
those that can change their value to the value which leaders
send to them and they do not perform any computation.
As it is described in KOPT algorithm, there aren different
groups for a graph withn agents. Consequently, there are
n leaders. We define the index setL = {1, 2, .., n}. The
index setL is divided intoh subsetsS = {S1,S2, . . . ,Sh}.
Each subset includes agent’s ID which should be activated.
In each round based on a pre-defined approach which we
discuss it in next section, one of theSi is selected and the
leaders inSi run a complete algorithm in a synchronous



manner. The main problem is to assign agents to subgroups
{S1, . . . ,Sh}. The best approach to this end is the one which
assign leaders in subsets which by activation of theirs leaders
solution quality increases in each round. Such an approach is
the most desired one but in return increases the complexity
of algorithm. Leaders’ selection can be performed by a
sequential or stochastic approach. These two approaches are
simple methods which decrease computational complexity
in substantial amount.

In sequential approach, in the first round,S1 is selected,
in the second round,S2 and in thehth roundSh are selected,
in roundh + 1, S1 is selected again. Consequently, afterh
rounds all subsets are selected exactly once.

In stochastic approach with a probabilityP, a subsetSi

is selected. With respect to the law of large numbers, given
a large number of rounds all the subsets will be selected
with equal probability (16). Therefore, each subset will be
selected finally after a large number of rounds and all the
leaders will have the chance to be activated. In the following,
the proposed approaches are described in more detail.

A. Sequential PKOPT

In this approach at a given roundr, one of the subsets
S1,S2, . . . ,Sh is chosen in a sequential fashion. Afterh
rounds each subset is selected only once. In this method,
we assume in each round, each leader in a network, syn-
chronously checks if

` % h = r % h (3)

Where` is leader’s ID andr is the number of round. Then
this leader begins its computation based on KOPT algorithm
for the best assignment.

As an example consider the graph in Figure 1. Forh = 3,
setS will be:

S = {{Ag1,Ag4}, {Ag2,Ag5}, {Ag3,Ag6}}

Based on the above mentioned approach, in round1,
{Ag1,Ag4}, in round 2 {Ag2,Ag5} and in round 3
{Ag3,Ag6} are selected and it continues in the same fash-
ion. It is obvious that in the end ofhth round all subsets
are selected exactly once. Obviously different methods can
be used in the sequential approach.

B. Stochastic PKOPT

Stochastic approach is similar to the sequential approach.
The only difference is that at a given roundr one of the
setsSi is sampled randomly from{S1, . . . ,S2n−1} with
probability 1

2n−1 . In the stochastic approach each leader
generates a random number from[0,1] and if this number
is more than a thresholdθ this leader is activated. All the
leaders in a graph act synchronously and in a moment there
will be leaders which are activated. Then, each active leader
compute the best assignment for its group members based
on KOPT algorithm.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In sequential algorithm based on description in IV-A in
each round a subset which consists of leaders’ id is selected.
Number of subsetsh is an important parameter in this
algorithm and influences computational complexity, solution
quality and number of rounds. To see howh influences these
parameters we set up an experiment for graphs with different
structures andn = 22 to show computational complexity is
decreased by increasingh in each round, by applying our
PKOPT algorithm. The results are shown in Figure 3. In set
S = {S1, . . . ,Sh} increasingh means increasing cardinality
of S. In a graph withn agents there aredn

he leaders in
each subset. Hence, by increasingh, number of leaders in
each subset will be decreased. As it is described, in each
round a subset is selected, and if the leaders of a subset
decreases, the number of leaders which will be activated
in each round will be few. Therefore number of leaders
which compute new assignments are few and as a result
computational complexity will be decreased.
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Figure 3. Total number of messages are decreased by increasingh

As it is depicted in Figure 4 by increasingh solution
quality will be decreased. By increasingh number of leaders
which are activated will be decreased. Hence, the number
of new assignment which are computed will be decreased
and to reach the specified quality more number of rounds
will be needed. It means that, to reach the equal solution
quality in the same number of rounds like KOPT algorithm,
h should not be increased much.

Figure 5 depicts the relation betweenh and number of
rounds, it shows that by increasingh, the number of rounds
will be increased. As it is mentioned before, by increasing
h, the number of leaders which should be activated in each
round will be decreased. As a result, sometimes to converge
to optimal solution quality, more number of rounds should
be considered. In all of our experiments,h is considered in a
way that the number of roundsr′ not to increase too much.

According to the results which are depicted in Figures
3,4 and 5, parameterh should be chosen in way that in
few number of messages and rounds, algorithm converges
to a solution with high quality. Based on above discussions
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Figure 5. Total number of rounds are increased by increasingh

related to parameterh and number of rounds an estimation
related to computational complexity of PKOPT is repre-
sented.

If we considerm the maximum number of messages
which are passed in each group, total number of messages
which are passed in each round of KOPT algorithm for the
whole graph would bem×n. Consequently, the total number
of messages afterr rounds would be:

TKOPT = n×m× r (4)

In PKOPT algorithm this amount would be:

TPKOPT =
n

h
×m× r′ (5)

WhereT is the total number of messages.
We introduce parameterβ to compare computational

complexity of KOPT and PKOPT with regard to parameter
h.

β =
TPKOPT

TKOPT
(6)

As we’ll see in the next section and depending on the
structure of a graph, the number of rounds in KOPT and

PKOPT are not much different so if with a good approxi-
mation we ignorer andr′ and considerrr′≈1, by sequential
approach, the number of messages passed among agents in
each round decrease by1h .

An example is given to show how the best value forh can
be chosen. For a mesh graph withn = 22, different values
for parameterh are chosen to reach a solution with the
highest possible quality and low computational complexity.
Figure 6 depictsβ vs h. It is verified thath should be
balanced according to the number of messages, the solution
quality and the number of rounds. As it is clear, up to
h = 10 in sequential PKOPT algorithm the computational
complexity is decreased whereas the solution quality is
almost the same as KOPT algorithm. Forh > 10, number
of rounds should be increased to reach the quality of KOPT
solution.
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For stochastic approach, we use normal distribution and
set the leader to use thresholdθ in range[0,1]. As mentioned
in section IV each leader generates a number based on this
function, then compares this number by its threshold to
decide about activation. Due to many similarities we will not
present the complexity analysis for the stochastic approach
which is decreased to almost half in average.

VI. EXPERIMENTAL RESULT

In this section, We provide the experimental results of
the proposed algorithms which are applied to mesh, fully
connected and weakly chorded ring graphs. The results
are shown for each of the above mentioned graphs with
n = 4, 6, 9, 18, 24 wheren is the number of agents. These
structures are used to prove the efficiency of the proposed
algorithms based on computational complexity and solution
quality. Solution qualityR is calculated based on equation 2
and computational complexityT is computed based on equa-
tion 4. These results confirm the better performance of the
proposed algorithms in comparison with KOPT algorithm.

In all experiments the solution quality is considered
as the stopping criterion and computational complexity of



algorithms is utilized to compare the algorithms. To choose
a proper value for parameterh, we do the same analysis
described in section V and we decide to considerh = 2 for
sequential PKOPT algorithm. In other words in each round
only 1

2 of leaders will be activated. For stochastic approach,
we considerθ = 1

2 for each leader.
For mesh graph withn = 4, 6, 9, 18, 24, KOPT, stochastic

PKOPT and sequential PKOPT algorithms are applied. Re-
sults are shown in Figure 7. The diagram on the top depicts
solution quality based on these algorithms and the diagram
on the bottom shows the computational complexity. For
mesh graph withn = 9, the solution quality for stochastic
PKOPT isR = 27, for sequential PKOPT isR = 28 and
for KOPT algorithm isR = 29. As it can be seen in Figure
7 the solution quality for different sizes of mesh graph does
not have large discrepancy.

Computational complexity is another important factor in
analyzing new algorithms. For mesh graph withn = 9,
the computational complexity for KOPT isT = 2800, for
stochastic PKOPT isT = 2100 and for sequential PKOPT
algorithm isT = 1800.
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To have a complete evaluation of new algorithms both fac-
tors (solution quality and computational complexity) should
be considered. For mesh graph withn = 9, the solution
quality for sequential PKOPT isR = 28 and for KOPT
algorithm is R = 29. Difference between the solution

quality of these two algorithms is 1, as a result solution
quality of KOPT is3% better than the solution quality of
sequential PKOPT . Difference between the solution quality
of KOPT with R = 29 and stochastic PKOPT withR = 27
is 2 and as a result solution quality of KOPT6% is better
than the solution quality of stochastic PKOPT algorithms.
On the other hand, computational complexity of KOPT
and sequential PKOPT areT = 2800 and T = 1800
consecutively which shows that computational complexity is
decreased55% by sequential PKOPT algorithm. For KOPT,
computational complexity isT = 2800 and for stochastic
PKOPT isT = 2100 which shows that computational com-
plexity is decreased33%. It is obvious that the discrepancy
of qualities is not too much and are tolerable than more
computational cost.

Mesh and complete graphs are categorized as dense
graphs. Consequently, the result for both graphs are very
close to each other. As it is shown in Figure 8 the solution
quality for all three types of algorithms has no discrepancy.
In contrast, computational complexity decreases in a con-
siderable amount. For graph withn = 9, computational
complexity decreases32% by sequential approach and45%
by stochastic approach.
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Figure 8. Complete Graph

Results of a weakly chorded ring graph are depicted in
Figure 9. A weakly chorded ring graph is selected as a



sparse graph to show the efficiency of algorithms for sparse
graph in comparison with mesh graph which is a kind of
dense graph. In graph withn = 9, utilities are close to
each other for all three types of algorithms. On the other
hand, according to the following discussions computational
complexity is increased5% by sequential PKOPT and8%
by stochastic PKOPT algorithm.
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There is a difference among the results for dense and
sparse graphs based on two proposed approaches. In dense
graphs, overlap among groups are more than the sparse
graphs. Therefore, since the conflicts are being resolved
number of leaders which set their assignment are not much
and are close to the number of leaders which are activated
in PKOPT algorithm. High number of overlaps means
that groups have lots of agents in common and there is
low discrepancy among quality of solutions of overlapping
groups. Consider the graph in Figure 1, group1 and group
2 have an overlap and the only difference is in agent6.
The best assignment for these groups areRG1 = 10 and
RG2 = 10. By this simple example, it is clear that in dense
graphs it is not very important which leaders are activated
because the solution quality of groups are very close to each
other. As a result, in dense graphs there is no difference
among the solution quality of KOPT and two other proposed
algorithms. Consequently, number of rounds do not change

a lot.
In sparse graphs like weakly chorded ring graphs the

number of overlaps among groups are not much. Thus,
number of leaders which set their assignment in KOPT are
more and the solution quality in KOPT will increase more
than PKOPT in each round. In sequential and stochastic
PKOPT algorithms, some leaders are activated which do not
have the best solution quality among the others, therefore
solution quality in each round does not increase as much as
the solution quality of KOPT algorithm. As a result, number
of rounds increase to converge to optimal solution quality
in PKOPT. According to the description above, in sparse
graphs, discrepancy in solution quality is more than dense
graphs.

It can be concluded that the proposed algorithms have
better performance in dense graph in comparison with sparse
graphs.

VII. C ONCLUSION AND FUTURE WORK

In this paper, sequential PKOPT and stochastic PKOPT
algorithms have been analyzed and it is shown that when
the KOPT algorithm converges, sequential and stochastic
PKOPT algorithms converge too. To be more precise on
the result, the proposed algorithms were applied to different
graphs. According to the results, the proposed algorithms
for dense graphs will decrease the solution quality a bit, but
will decrease the computational complexity in substantial
amount. In sparse graphs such as weakly chorded ring
graphs the results are a little different. In sparse graphs to
reach an identical solution quality like KOPT algorithm,
computational complexity will increase a bit. According
to the discussion in this paper the proposed algorithms
have better performance on dense graphs. The important
issues which were investigated in this paper were balancing
parameterh in sequential PKOPT andP in stochastic
PKOPT algorithms. Based on experimental results, compu-
tational complexity decreases to1h in each round for a given
h. Moreover, it was shown that by increasing parameter
h the number of rounds will be increased. In stochastic
PKOPT algorithm, parameterP has the same role and by
increasingP, computational complexity will be increased
as well. Generally, depending the structure of the graphs,
PKOPT algorithms reduces the number of messages and
computations in each round, but may increase the time
of convergence. In future works to improve the proposed
algorithms, more investigation related to parameterh andP
will be done and we try to find a new approach for group
formation.
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