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Abstract In this paper we present a novel approach to

reinforcement learning for continuous state–action control

problems. This approach is obtained by combining least

square policy iteration (LSPI) with zero-order Takagi–

Sugeno fuzzy system, which we call it, ‘‘fuzzy least square

policy iteration (FLSPI).’’ FLSPI is a critic-only method

and has advantages of both LSPI and fuzzy systems toge-

ther. We define state–action basis functions based on a

fuzzy system while LSPI theorem conditions are satisfied.

Our aim is to find the most suitable continuous action in

every state using fuzzy rules. This method is learning rate

independent and has positive mathematical analysis that

defines an error bound for it. We show by simulation that

the learning is faster and the quality of results is better than

the two previous fuzzy reinforcement learning approaches

based on critic-only architecture, i.e., fuzzy Q-learning

(FQL) and Fuzzy SARSA Learning (FSL). We test FLSPI

on four well-known problems (i.e., boat problem, maze,

inverted pendulum and cart–pole balancing) and show the

FLSPI higher performance, function of its error bound, its

convergence against FQL and FSL divergence and its

excellence against the latest proposed methods,

respectively.

Keywords Continuous state-action � Fuzzy systems � Least

square policy iteration � Reinforcement learning � State-

action function approximation

1 Introduction

Reinforcement learning (RL) is an algorithmic method for

solving problems in which actions (decisions) are applied

to a system over an extended period of time, in order to

achieve a desired goal. The time variable is usually discrete

and actions are taken at every discrete time step, leading to

a sequential decision-making problem [4]. Most of the

problems that RL tries to solve and deal with continuous

state and action spaces but for large and continuous space

problems standard RL methods can no longer be applied in

their original form. Instead, approximate versions of solu-

tions are introduced. Theoretical guarantees are provided

on the performance of the algorithms, and numerical

examples are used to illustrate their behavior. These

methods have two major advantages which enable them to

be applied to some successful applications [18, 21]. Firstly

they do not need to keep tabular information about state–

action value function, and hence, they do not need too

much memory and second, they do not need exact infor-

mation [16]. It is also necessary to notice that in discrete

RL, state (or state–action) values are independent while in

continuous RL, these values are approximated in every

time step based on the approximator parameters. So

parameter updating in every time step affects state (or

state–action) values in the whole space.

Fuzzy systems are among efficient approximators [7].

Fuzzy reinforcement learning (FRL) methods have been

proposed based on fuzzy systems to solve RL challenges in

continuous spaces [2, 5, 9]. FRL methods often use two
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well-known architectures: actor-critic and actor-only

[9, 12]. Actor-critic architecture has two independent parts:

actor and critic [22]. In the actor-critic method, actor

produces output action and critic approximates value

function. In contrast, actor-only methods have only one

part, critic. Critic is used to approximate value function. In

critic-only methods, final action is produced just by

approximated values. FRL methods usually face two very

important challenges. First, they either have no mathe-

matical analysis [2] or their mathematical analysis are

proposed for discrete spaces only [5, 9]. Second they are

mostly dependent on learning rate parameter [2, 9] which is

problem-specific.

In order to tackle these challenges, we use a combina-

tion of least square policy iteration (LSPI) method

[5, 6, 16, 19, 23] and fuzzy system. LSPI is an approximate

policy iteration (PI) method which has two phases: policy

evaluation that evaluates the current policy by computing

its approximate value function in every iteration and policy

improvement that finds a new, improved policy using this

value function. LSPI is an iterative algorithm that uses least

squares techniques for policy evaluation phase. Least

squares techniques have relaxed convergence requirements

and approach their solution quickly as the number of

samples increases. LSPI has positive mathematical analysis

and learning rate independency and also high performance.

Most versions of LSPI employ discrete actions. Some

methods apply LSPI on continuous action space and pro-

posed the mathematical analysis for discrete action space

[5, 6]. However, there exist important classes of control

problems in which continuous actions are required. For

instance, when a system must be stabilized around an

unstable equilibrium, any discrete action policy will lead to

undesirable chattering of the control action. A compre-

hensive review on LSPI is presented in [4].

In this paper we use fuzzy system as our general

approximator to extend LSPI with continuous action space.

Our method, which we call it fuzzy least square policy

iteration (FLSPI), approximates state–action value function

in LSPI. In another view, we use LSPI to adjust conse-

quents of rules in the fuzzy system. The proposed Fuzzy

LSPI is a learning rate-independent method, has positive

mathematical analysis for continuous state–action spaces

and convergence faster than other FRL methods. It also can

be applied to both off-line and on-line LSPI (we use both

form in our experiments). A very incomplete version of this

work in persian language is appeared in [11].

The organization of this paper is as follows: In Sect. 2,

we introduce the basic concepts and background knowledge

for our method. In Sect. 3, we propose FLSPI. In Sect. 4, we

present the theoretical analysis of FLSPI. Section 5 presents

the simulation results, followed by Sect. 6.

2 Preliminary Concepts

In this section, we introduce tree main concepts that our

work is based on.

2.1 Reinforcement Learning

Reinforcement learning is a type of learning in which agent

learns something via trial and error [22]. In fact, agent is in

contact with the environment by receiving two types of

signals: The first one, state indicates in which state of the

world agent is, and the second, reward shows the imme-

diate desirability of each state. However, the agent’s goal is

to maximize its long-term utility rather than the immediate

one. By taking actions, agent influences the environment

and changes its state. Equation 1, which is called Bellman

equation [1], is the basis of RL, where V(s) is the value of

state s (which shows the long-term usefulness of s ), R(s) is

the immediate reward of state s, S and A are the set of states

and actions, respectively, cð0� c\1Þ is the discount fac-

tor, and Psaðs0Þ is the transition model which is the prob-

ability of reaching state s0 after taking action a in state s.

8s 2 S : VðsÞ ¼ RðsÞ þ cmax
a2A

X

s02S
Pðs; a; s0ÞVðs0Þ ð1Þ

2.2 Least Square Policy Iteration (LSPI)

Policy iteration (PI) [13] is one of the RL methods which

discover optimum policy for every MDP by producing a

sequence of policies. PI is an iterative algorithm which has

two phases in every iteration: Policy evaluation computes

Qpm for current policy pm:

Qpm s;að Þ ¼R s;að Þþ c
X

s02S
Pðs;a; s0Þ

X

a02A
pðs0;a0ÞQpmðs0;a0Þ

ð2Þ

and policy improvement defines improved greedy policy

pmþ1 on Qpm :

pmþ1ðsÞ ¼ argmaxa2AQ
pmðs; aÞ ð3Þ

This approach has high performance in finite state and

action space and also it has mathematical analysis [3]. We

can compute exact value of Qpm by solving this equation:

TpQ
p ¼ Qp ð4Þ

where Tp is the Bellman operator under policy p:

ðTpQÞðs;aÞ ¼Rðs;aÞþ c
X

s02S
Pðs;a; s0Þ

X

a02A
pðs0;a0ÞQðs0;a0Þ

ð5Þ

This approach has curse of dimensionality problem as the

other RL approaches.
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Least square policy iteration (LSPI) [16] is modified to

use approximate policies and sample-based approximate

policy improvements. This approach approximates state–

action function instead of computing its exact value. LSPI

is based on adapting the state–action function approxima-

tion (i.e., bQ) with its image under Bellman operator.

Generally, the state–action function approximation can

be defined as follows:

bQ
p¼UW ð6Þ

where W is weight matrix and U is basis function matrix:

U¼

/ s1; a1ð ÞT

. . .

/ si; aið ÞT

. . .

/ s Sj j; a Aj j
� �T

0
BBBBBB@

1
CCCCCCA

ð7Þ

/ðs; aÞ ¼
/1ðs; aÞ

. . .

/kðs; aÞ

0

B@

1

CA ð8Þ

where k � jSjjAj, and /j are basis functions. In LSPI, bQ
p

is computed as follows:

bQ
p¼UðUTUÞ�1

UTpQ̂
p ð9Þ

By simplifying the previous equation (after expanded cal-

culation that this paper is not suitable to explain them), one

can obtain following results [16]:

AW ¼ b ð10Þ

A ¼ Aþ / s; að Þ / s; að Þ � c/ s0; p s0ð Þð Þð ÞT ð11Þ

b ¼ bþ /ðs; aÞR ð12Þ

where R is the reward of transition from state s to state s0,
while the action a is selected. c is learning rate and matrix

A and vector b are used to calculate weight matrix W and

are computed iteratively.

2.3 The Takagi–Sugeno Fuzzy System

Generally, a fuzzy inference system (FIS) is a system with

multiple inputs (associated with linguistic terms) and one or

more output(s). FIS is based on if–then rules. Mamdani and

Takagi–Sugeno are the major types of FIS . A sample rule for

an n-input–m-output Mamdani FIS looks like as follows:

R : If x1 is L1 and. . . and If xn is Ln Then

y1 is K1; . . .; ym is Km

where xi,i ¼ 1; . . .; n is input to fuzzy system, yj, j ¼
1; . . .;m is the output of the system, and Li, i ¼ 1; . . .; n and

Kj, j ¼ 1; . . .;m are the linguistic terms. Takagi–Sugeno

FIS is similar to Mamdani FIS with this difference that the

output of Takagi–Sugeno FIS is crisp. A rule in Takagi–

Sugeno FIS looks like as follows:

R : If x1 is L1 and. . . and if xn is Ln then

y1 ¼ f1ðx1; . . .; xnÞ. . . ym ¼ fmðx1; . . .; xnÞ is Km

where fj ,j ¼ 1; . . .;m is a map from the input space into the

output space.

3 Fuzzy Least Square Policy Iteration

RL methods are applicable and powerful, but they are weak

in large and continuous space problems, while most of the

real-world problems deal with continuous spaces. To

overcome this weakness, many methods have been pro-

posed, but they have shortcomings either in the continuous

action spaces or in mathematical analysis foundations. In

this paper, we try to tackle this weakness and in this

direction, we gain some other advantages as we will

explain later on.

LSPI is a flexible and powerful RL method with many

advantages such as learning rate independence and fast

convergence, but LSPI could not work on continuous

action space. We take the advantages of LSPI and combine

it with fuzzy system to solve RL continuity problems in

state and action space. In this section, we explain our new

FRL method which we call it, FLSPI.

Figure 1 shows the block diagram of FLSPI and the

dependencies among its various components. At first, the

state–action value function is approximated using the basis

functions that are defined with the fuzzy system, and also

the weight vector is obtained using LSPI. One of the

advantages of approximation is computing policy on

demand instead of storing it physically in a table [16]. In

the next step, rule consequence weight parameters are

adjusted using LSPI. Policy improvement, in any state s, is

done by selecting action a that has maximum value of

Q̂ðs; aÞ. In our method, based on our different definition of

basis functions and Q̂ formula, this problem will be chan-

ged into finding action with the maximum weight in every

rule. The policy evaluation can be done in the same way as

LSPI. This component computes approximated state–ac-

tion value function using improved policy.

FLSPI can be viewed from two perspectives. From one,

FLSPI uses fuzzy system to extend LSPI to apply to the

problems with continuous action space. We use zero-order

Takagi–Sugeno fuzzy system and define suitable basis

functions to achieve our goal. These basis functions satisfy

LSPI conditions. Basically, we partition problem state

space and then we select m actions from action space while
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paying attention to the problem. We define R rules as

follows:

Ri : If x1 is Li1 and . . . and If xn is Lin Then

ðoi1 with weight wi1 or . . . or oim with weight wimÞ
ð13Þ

where s ¼ ðx1; . . .; xnÞ is the vector of n-dimensional vector

space and Li ¼ Li1 � . . .� Lin is the n-dimensional strictly

convex and normal fuzzy set of the ith rule with a unique

center, m is the number of possible discrete actions for each

rule, oij is the jth candidate action, and weight wij is the

approximated value of the jth action in the ith rule. In ith

rule, action oiiþ (where iþ is the index of the selected

action) will be selected using e� greedy action selection as

follows:

atðstÞ ¼
XR

i¼1

liðstÞoiiþ ð14Þ

where liðsÞ is normalized firing strength of ith rule for state

s.

The firing strength of each rule is obtained by the pro-

duct of antecedents of fuzzy sets. Basis functions are

defined by normalized firing strength functions of rules:

/ðs; aÞ ¼ 0. . .l1ðsÞ. . .0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{m

0. . .l2ðsÞ. . .0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{m

. . . 0. . .lRðsÞ. . .0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{m

2
4

3
5
T

ð15Þ

so, this method produces continuous action values.

From another perspective, FLSPI uses LSPI to adjust the

consequences of the defined rules in 13. FLSPI adjusts the

values wij that are used to obtain the best policy. So this

system receives a state from the continuous state space as

an input and gives an action from the continuous action

space as an output. The details of basis functions (i.e.,

number and the value of the actions that are used as rules

consequent) are problem dependent and should be deter-

mined by user based on his/her experiences. The off-line

FLSPI algorithm procedure is summarized in Algorithm 1.

A and b are defined in previous relations 12, 14, 15 and

calculate weight vector W. Updating A and b is done by

relation 16 and relation 17 in every time step, and updating

of weight vector W is done by relation 18 at the end of

every episode.

We can use on-line FLSPI for non-episodic problems or

problems that need to make decision in every state based

on past episodes observations. The on-line FLSPI algo-

rithm procedure is summarized in Algorithm 2. In on-line

FLSPI algorithm, weight vector is updated in every fix

number of time steps. It is necessary to remember that

updating weight vector actually is updating bQ, which leads

to the new policy.

We illustrate our on-line algorithm with a simple

example. In this example, we consider a simple problem to

avoid unnecessary complex calculations. Consider a maze

problem without any obstacles. State space is a two-di-

mensional continuous space with size 10 in every dimen-

sion. We start from point (1,1) and the goal is a circle in

(9,9) with a radius of 0.5. We partitioned both dimensions

of state space into two equivalent partitions (i.e., low and

high) and defined consequences of rules by a set of tree

angles -180,0,180 to reduce matrix dimensions. Step size is

equal to 1. The reward function is defined based on the

distance between the agent and the goal and equals to the

negative value of this distance. The fuzzy rules in this

problem are as follows:

R1 : if x is low and y is low, then o1 with weight w11 or o2

with weight w21 or o3 with weight w31

R2 : if x is low and y is high, then o1 with weight w12 or

o2 with weight w22 or o3 with weight w32

R3 : if x is high and y is low, then o1 with weight w13 or

o2 with weight w23 or o3 with weight w33

R4 : if x is high and y is high Then o1 with weight w14 or

o2 with weight w24 or o3 with weight w34

Learning should be done in several iterations while every

iteration has several episodes, but the execution of the

algorithm is very time-consuming. To make it brief, we

will only present the first tree episodes of the first iteration.

We update weight vector in every episode. We show agent

state with Xi , weight vector with Wi ¼ ½w11;w21;w31;

w21;w22;w23;w31;w32;w33;w41;w42;w43�. selected angle

with anglei, selected actions vector with Oi ¼ ½o11þ ;

o22þ ; o33þ ; o44þ �, normalized firing strengths vector with

Mi ¼ ½l1; l2; l3; l4� and reward with Ri in ith episode.

Fig. 1 Block diagram describing fuzzy least square policy iteration
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We start from X0 ¼ ½1; 1�,W1 ¼ ½0; 0; 0; 0; 0; 0; 0; 0; 0; 0;

0; 0�T and because of weight value equivalency, we add

small random term to wights. After one episode, we have:

M1 ¼ ½0:81; 0:09; 0:09; 0:01�, O1 ¼ ½0; 180; 0; 0�, angle1 ¼
16:2, R1 ¼ �12:27, X1 ¼ ½0:12; 0:53�, W2 ¼ ½0; 190:17; 0;

0; 0; 21:13; 0; 21:13; 0; 0; 2:35; 0�T . So after episode two:

M2 ¼ ½0:94; 0:05; 0:01; 0�, O2 ¼ ½0; 180; 0; 0�, angle2 ¼
9:39, R2 ¼ �11:50, X2 ¼ ½0:26; 1:52�, W3 ¼ ½0;�187:90;

0; 0; 0;�138:99; 0;�232:11; 0; 0;�27:21; 0�T and after

episode tree, we have: M3 ¼ ½0:83; 0:15; 0:02; 0�, O3 ¼
½180; �180;�180;�180�, angle3 ¼ 117:39, R3 ¼ �10:54,

X3 ¼ ½0:84; 2:33�, W4 ¼ ½0;�187:90;�70:64;�12:64; 0;

�138:99; �1:90;�232:11; 0;�0:34;�27:21; 0�T . After

106 episodes, the agent reaches the goal. The parameters in

this problem are not optimal and are chosen to decrease the

example complexity.

4 Theoretical Analysis of FLSPI

In this section, we provide some theoretical results con-

cerning the error bound for FLSPI. We use our definitions

of FLSPI from section 2.2.

First, let us mention Stone–Weierstrass theorem [14]

which is essential in our analysis.

Theorem 1 (Stone—Weierstrass theorem) Let Z be a set

of continuous function on the convex space X such that

1. Z is an algebra, i.e., Z is closed under sum, product

and scalar product.

2. Z separates the points of X, i.e.,

8x1; x2 2 X; x1 6¼ x2; ; 9F 2 Z s:t Fðx1Þ 6¼ Fðx2Þ

3. Z is not zero in any point of X, i.e.,

8x 2 X; ; 9F 2 Z s:t FðxÞ 6¼ 0

then for every continuous function G (x) on X and every

arbitrary e[ 0, there exists a function F 2 Z such that

F xð Þ � GðxÞk k1\e:

We apply Theorem 1 to bQ. Lemma 1 shows that defined

fuzzy system in our work is a general approximator for the

set of all continuous functions. Previously, it is proved in

Ref. [24] that fuzzy system is a general approximator, but

its fuzzy system is different from our fuzzy system.

Lemma 1 For any continuous function Q and every

arbitrary e[ 0, there exists function bQ ¼
PR

i¼1 liðsÞwiiþ

such that

kbQ � Qk1\e:
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Proof Let X be the space of the Cartesian product of the state

space (the convex subspace of Rn) and the action space (the

convex subspace ofRm). ThenX is a convex subspace ofRnþm,

where n and m are dimensions of state and action space,

respectively. We define Z as the space of all functions

bQ ¼ UW , whereW is vector andU is determined by relation 7.

bQ : X ! Y ; y ¼ bQðs; aÞ ;X � Rnþm ; Y � R

Consider R rules as we defined before in relation 13:

Ri : If x1 is Li1 and \ldots and if xn is Lin then ðoi1 with

weight wi1 or … or oim with weight wimÞ
and consider y as follows:

y ¼ bQðs; aÞ ¼
XR

i¼1

liðsÞwiiþ ð19Þ

where wiiþ is corresponding weight to selected action of ith

rule and liðsÞ is normalized firing strength of ith rule in

order to input s:

liðsÞ ¼
aiðsÞPR
j¼1 ajðsÞ

ð20Þ

where aiðsÞ is firing strength of ith rule in order to input s:

aiðsÞ ¼
Yn

l¼1

lliðslÞ ð21Þ

lliðslÞ is the degree of membership for sl in lth membership

function. So we have:

bQðs; aÞ ¼
PR

i¼1 wiiþ
Qn

l¼1 l
l
iðslÞPR

i¼1

Qn
l¼1 l

l
iðslÞ

ð22Þ

Now consider the following equations:

X

i

pibi

 !
X

j

cj

 !
þ

X

j

qjcj

 !
X

i

bi

 !

¼
X

i

X

j

ðpi þ qjÞðbicjÞ
ð23Þ

X

i

ai

 !
X

j

bj

 !
¼
X

i

X

j

aibj ð24Þ

We define functions bQ1 with R1 rules and bQ2 with R2 rules

in Z,

bQ1ðs; aÞ ¼
PR1

i¼1 Wiiþ
Qn

l¼1 l
l
iðslÞPR1

i¼1

Qn
l¼1 l

l
iðslÞ

bQ2ðs; aÞ ¼
PR2

j¼1 Wjjþ
Qn

l¼1 l
l
jðslÞPR2

j¼1

Qn
l¼1 l

l
jðslÞ

By Equation 23 we have :

bQ1ðs; aÞ þ bQ2ðs; aÞ ¼
PR1

i¼1

PR2

j¼1 ðwiiþ þ wjjþÞ
Qn

l¼1 l
l
iðslÞlljðslÞ

� �

PR1

i¼1

PR2

j¼1

Qn
l¼1 l

l
iðslÞlljðslÞ

� �

) bQ1ðs; aÞ þ bQ2ðs; aÞ 2 Z

So Z is closed under summation. Now by Equation 24, we

have:

bQ1ðs; aÞ:bQ2ðs; aÞ ¼
PR1

i¼1

PR2

j¼1 ðwiiþ :wjjþÞ
Qn

l¼1 l
l
iðslÞlljðslÞ

� �

PR1

i¼1

PR2

j¼1

Qn
l¼1 l

l
iðslÞlljðslÞ

� �

This means that Z is closed under multiplication. Clearly

Z is closed under scalar multiplication. So Z is an algebra

and the first condition of Theorem 1 is satisfied.

Now, let v ¼ ðs1; a1Þ 2 X and h ¼ ðs2; a2Þ 2 X be two

arbitrary vectors such that v 6¼ h. So s1 6¼ s2 or (a1 6¼ a2

and s1 ¼ s1). Consider the fuzzy system with two rules that

has two membership functions as follows:

ll1ðslÞ ¼ exp � 1

2
ðsl � s1lÞ2

� �

ll2ðslÞ ¼ � 1

2
ðsl � s2lÞ2

� �

Let consequents of rules are o11 and o21:

o11 ¼ a1=2; o12 ¼ ða2=2Þexp
1

2
kv� hk2

� �

o21 ¼ ða1=2Þexp
1

2
kv� hk2

� �
; o22 ¼ a2=2

Assume o11 and o21 are selected indexes for a1, and o12 and

o22 are selected indexes for a2. In addition, if s1 6¼ s2,

define the weights:

w11 ¼ w12 ¼ 0; w21 ¼ w22 ¼ 1

and if a1 6¼ a2 and s1 ¼ s1, define the weights:

w11 ¼ w21 ¼ 1

2
; w12 ¼ w22 ¼ 1

then:

a1ðsÞ ¼
Yn

l¼1

ll1ðslÞ ¼ exp � 1

2
ks� s1k2

2

� �

a2ðsÞ ¼
Yn

l¼1

ll2ðslÞ ¼ exp � 1

2
ks� s2k2

2

� �
:

So, if s1 6¼ s2 we have:
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bQðs1; a1Þ ¼
exp � 1

2
ks1 � s2k2

2

� �

1 þ exp � 1
2
ks1 � s2k2

2

� �

bQðs2; a2Þ ¼
1

1 þ exp � 1
2
ks1 � s2k2

2

� � :

and if a1 6¼ a2 and s1 ¼ s1, we have:

bQðs1; a1Þ ¼
1

2
; bQðs2; a2Þ ¼ 1

) bQðvÞ 6¼ bQðhÞ

So Z separates the points of X and second condition of

Theorem 1 is satisfied.

Now let wij ¼ c 6¼ 0; i; j ¼ 1; 2. By previous definition,

we have:

bQðxÞ ¼ c 6¼ 0

for all x 2 X. So Z is not zero in any point of X and this

satisfies the third condition of Theorem 1 which completes

the proof. h

In the following, we prove some lemmas to define error

bound in Theorem 2.

Lemma 2 Let p be a stationary policy and x be an

arbitrary scalar. Then we have:

TðQþ xeÞðs; aÞ ¼ TQðs; aÞ þ cx ð25Þ

TpðQþ xeÞðs; aÞ ¼ TpQðs; aÞ þ cx ð26Þ

where is identity.

Proof Since this is a discount problem with discount

rate c, then proof will be completed by Lemma 4.3 of

Ref. [3]. h

Lemma 3 Let p be a stationary policy. Then we have:

kTQ� T bQk1 � ckQ� bQk1 ð27Þ

kTpQ� Tp bQk1 � ckQ� bQk1 ð28Þ

Proof Since this is a discount problem with discount

rate c, then proof will be completed by Lemma 4.4 of

Ref. [3]. h

Lemma 4 Let pk be kth policy introduced by kth iteration

of FLSPI algorithm and ek [ 0 be an arbitrary real number

such that:

kbQpk � Qpkk1 � ek:

Then we have:

Qpkþ1ðs; aÞ�Qpkðs; aÞ þ 2cek
1 � c

; 8ðs; aÞ: ð29Þ

Proof We define:

ek ¼ sup
ðs;aÞ

ð Qpkþ1ðs; aÞ � Qpkðs; aÞÞ:

So we have:

Qpkþ1ðs; aÞ ¼ Qpkðs; aÞ þ ek ; 8s; a:

But TpQ
p ¼ Qp. By relation 26, we have:

Qpkþ1ðs; aÞ ¼ Tpkþ1
Qpkþ1ðs; aÞ

� Tpkþ1
ðQpkðs; aÞ þ ekÞ ¼ Tpkþ1

Qpkðs; aÞ þ cek:

In addition, all errors of actor are zero in LSPI because

LSPI does not need to represent policy approximation [16].

So we have: Tpkþ1
Qpk ¼ TpkQ

pk , for every k. By relation 28,

we can get:

Qpkþ1ðs; aÞ � Qpkðs; aÞ� Tpkþ1
Qpkðs; aÞ þ cek

� Qpkðs; aÞ ¼ Tpkþ1
Qpkðs; aÞ � Tpkþ1

bQ
pkðs; aÞ

þ Tpkþ1
Q̂

pkðs; aÞ � Qpkðs; aÞ þ cek � cjbQpkðs; aÞ
� Qpkðs; aÞj þ cjbQpkðs; aÞ � Qpkðs; aÞj þ cek
¼ 2cek þ cek:

So we have:

sup
ðs;aÞ

ð Qpkþ1ðs; aÞ � Qpkðs; aÞÞ� 2ceþ cek

) ek � 2cek þ cek

) ek �
2c

1 � c
ek:

h

Lemma 5 Let pk be the kth policy introduced by the kth

iteration of FLSPI algorithm and ek 	 0 be an arbitrary

real number such that:

kbQpk � Qpkk1 � ek;

In addition assume:

fk ¼ sup
ðs;aÞ

ðQpkðs;aÞ�Q
ðs;aÞÞ; ð30Þ

Then we have:

fkþ1 � cfk þ cek þ 2cek:

Proof By assumption, we have:

Qpkðs; aÞ�Q
ðs; aÞ þ fk; 8ðs; aÞ:

But T is a non-descending operator [3] and also TQ
 ¼ Q
.
So we have by relation 21:

TQpkðs; aÞ�
TðQ
ðs; aÞ þ fkÞ ¼ TQ
ðs; aÞ þ cfk ¼ Q
ðs; aÞ þ cfk

Now by using relation 26 and this fact that if ja� bj\e
then a\bþ e and b\aþ e, we have:
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Tpkþ1
Qpkðs; aÞ� Tpkþ1

ðbQpkðs; aÞ þ ekÞ
¼ Tpkþ1

Q̂
pkðs; aÞ þ cek

¼ T bQpkðs; aÞ þ cek
� TðQpkðs; aÞ þ ekÞ þ cek
¼ TQpkðs; aÞ þ cek þ cek
�Q
ðs; aÞ þ cfk þ 2cek

h

Theorem 2 Let pk kth policy be obtained from kth iter-

ation of FLSPI algorithm, then we have:

limsupk!1kbQpk � Q
k1 � 1 þ c2

ð1 � cÞ2
e ð31Þ

where e ¼ limsupekk!1.

Proof We have by Lemma 4:

limsup
k!1

fk � c limsupk!1fk þ c limsupk!1ek þ 2ce

Now by Lemma 3 we have:

limsup
k!1

ek ¼
2c

1 � c
e

So we can deduce:

ð1 � cÞ limsup
k!1

fk � c
2c

1 � c
eþ 2ce ¼ 2c

1 � c
e

) limsupk!1fk ¼
2c

ð1 � cÞ2
e

limsupk!1kQpk � Q
k1 � 2c

ð1 � cÞ2
e:

Moreover, we have:

kbQpk � Q
k1 ¼ kbQpk � Qpk þ Qpk � Q
k1
�kbQpk � Qpkk1 þ kQpk � Q
k1
) limsupk!1kbQpk � Q
k1 � limsupk!1kbQpk � Qpkk1

þ limsupk!1kQpk � Q
k1 � eþ 2c

ð1 � cÞ2
e

) limsupk!1kQ̂pk � Q
k1 � 1 þ c2

ð1 � cÞ2
e:

h

Briefly, two main objectives were analyzed in this sec-

tion. The result of Lemma 1 shows that every arbitrary

continuous function can be approximated by the defined

function set of FLSPI fuzzy system. In other words, FLSPI

is powerful to approximate any state–action value function

with any arbitrary accuracy. Lemmas 2, 3, 4 and 5 are

preliminaries for proving Theorem 2. This theorem defined

the error bound for difference between approximated state–

action value function and optimal state–action value

function. This error bound depends on ek, i.e., the

approximation accuracy of kth produced state–action value

function by FLSPI. If this limit converges to zero, then the

error converges to zero and approximated state–action

value function converges to optimal state–action value

function.

5 Simulation

In this section, we first demonstrate the performance of

FLSPI versus FQL and FSL in the boat problem. We select

these two methods for two reasons: First these methods are

among FRL methods and second, their action space is

continuous. We also show the function of error bound

theorem (i.e., Theorem 2) for FLSPI in a single-goal

environment. Then, we apply FLSPI, FQL and FSL to

show FLSPI convergence versus divergence of FQL and

FSL in the inverted pendulum problem. Finally, the well-

known cart–pole balancing problem is selected with the

aim of comparing performance of FLSPI against the latest

proposed method with continuous state–action spaces.

5.1 Boat Problem

We implemented our off-line FLSPI on the well-known

boat problem [15]. The goal is to tune a fuzzy controller

using FLSPI to drive a boat from the left bank to the right

bank in a river with strong nonlinear current. The goal of

this problem is to reach the quay from any position on the

left bank. The problem states are two-dimensional that

have continuous variables, namely x and y which are the

position of the boat bow ranging from 0 to 200. The quay

center is located at (200,100) and its width is five. The

action space of this problem is boat rudder angles. The

learner agent’s goal is to learn suitable angle (i.e., action)

in any state (considering the related water force) by using

reinforcement signal (i.e., reward).

To partition the input parameter x and y, five fuzzy sets

is defined. So we have 25 fuzzy rules. The output of con-

troller is boat angle. Twelve actions (boat angles) are

determined for any rule consequences: A ¼ f�100;�90;

�75;�60;�45;�35;�15; 0; 15; 45; 75; 90g.

Although we could define different action set for every

rule, we use same action sets for all rules. In addition,

initial weight values are the same and equal to zero.

Controller produces continuous output from combination

of these discrete actions. We use e-greedy action selection

method with high initial exploration rate and decrease it

along with algorithm execution. The learning aim is to find

suitable actions for rule consequences.

International Journal of Fuzzy Systems

123

Author's personal copy



The results of 100 distinct runs of FLSPI are given in

Table 1 and are compared to 100 distinct runs of FQL and

FSL [9]. The average of learning duration index (Avg.

LDI), standard deviation of learning duration index (std.

LDI), average of distance error index (Avg. DEI), failure

rate and average run time (avg. time) are depicted in

Table 1. The experiment was based on a machine with

Intel core i7 (2.20GH) processor and 8 gigabytes of

memory.

As it is shown in Table 1, FLSPI achieved better results

than FQL and FSL. For instance, average LDI for FLSPI is

5.17 and 5.1 times better than FQL and FSL, respectively.

Generally all metrics show a major improvement. In

addition, since the average time is remarkably decreased,

FLSPI is suitable for real-time problems.

Figures 2, 3 and 4 show the histogram of LDI for

FLSPI, FSL and FQL, respectively. One can see that in all

cases the agent learns in less than 670 episodes with FLSPI

while FSL and FQL cannot learn in the several iterations

even after 5000 episodes. Also our experiment shows

FLSPI does not have any divergence case in 100 distinct

runs while two other methods have some divergence cases.

In Fig. 5, the episodic changes of the first rule weights in

FLSPI are shown. Obviously in FLSPI, weights converge

very fast. In fact, after almost 700 episodes the change of

weights are very small and after 1000 episodes weights

completely converge. Results of implementation of FLSPI

on 40 test data are shown in Fig. 6. It can bee seen that the

agent has learned the task very fine and satisfactorily.

Table 1 Simulation results Method Initial param. Avg. DEI Avg. LDI SD (LDI) Failure rate Avg. time (s)

FQL a ¼ 0:1 12.46 1865.9 1224.1 5.35 147.86

FSL a ¼ 0:1 15.1 1839 1262.2 4.46 54.61

FLSPI 3.06 360.9 76.04 1.17 14.45

Fig. 2 Histogram of learning duration indexes for fuzzy least square

policy iteration

Fig. 3 Histogram of learning duration indexes for Fuzzy SARSA

Learning

Fig. 4 Histogram of learning duration indexes for fuzzy Q-learning

Fig. 5 Episodic changes of the first rule weights of fuzzy least square

policy iteration

F. Ghorbani et al.: Fuzzy Least Square Policy Iteration and Its Mathematical Analysis

123

Author's personal copy



5.2 Single-Goal Obstacle-Free Environment

We use a single-goal obstacle-free environment to show

function of error bound theorem for FLSPI. This environ-

ment has two dimensions with 16 states and 4 partitions in

every dimension. The start point is set to (1,1) and the goal

to (4,4). Action set has four members: right, up, left and

down with angles of f0
�
; 90

�
; 180

�
; 270

�g. The final action

is agent’s rounded angle from horizontal axis. Step lengths

are equal to 1. Agent receives reward ?1 for goal state, -1

for edges and -0.01 for other states. Since we need to

compare approximated state–action value function with

actual state–action value function, we discretize the state

space to use Theorem 2 .

The input of the system is state (x, y) and five triangular

fuzzy sets are used to partition each dimension. So we have

25 fuzzy rules. 4 actions ({right, up, left, down}) are

candidate for every rule. The e-greedy action selection

mechanism is also used. We examine this problem for two

different values of discount factor (i.e., c); 0.5 and 0.2. We

execute 10 independent runs and each run has 10000 epi-

sodes. An episode finishes if the agent reaches the corners

or if the number of steps exceeds 500.

Here, the obtained values for e (that is defined in The-

orem 2) are 2.2543 and 1.2334 for c ¼ 0:5 and c ¼ 0:2 ,

respectively. We show the related diagram for c ¼ 0:5 in

Fig. 7. Also after 10000 episodes, state–action value

function converges to optimal value. So we can deduce:

c ¼ 0:5 ) limsupk!1kbQpk � Q
k1 ¼ 2:2543c ¼ 0:2

) limsupk!1kbQpk � Q
k1 ¼ 1:2334

These values should be less than the defined error bound in

Theorem 2:

c ¼ 0:5 ) 1 þ c2

ð1 � cÞ2
e ¼ 1 þ 0:52

ð1 � 0:5Þ2

 2:2543 ¼ 11:2715

c ¼ 0:2 ) 1 þ c2

ð1 � cÞ2
e ¼ 1 þ 0:22

ð1 � 0:2Þ2

 1:2334 ¼ 2:0042

So this experiment shows the correctness of Theorem 2

perceptively.

Figure 8 shows the fast weights convergence. Weights

do not change after almost 3000 episodes.

5.3 Inverted Pendulum: Real-Time Control

We examine FLSPI as an on-line control mechanism on the

inverted pendulum problem and compare results with FQL

and FSL. This inverted pendulum [4] is a novel type of the

classical well-known inverted pendulum. In this problem, a

mass is placed off center on a disk and rotates in a vertical

plan. This mass is driven by a DC motor that its voltage is

limited so that the motor does not provide enough power to

push the pendulum up in a single rotation. Figure 9 shows a

Fig. 6 Sample test of FLSPI after learning. Test is down on 40

discrete points
Fig. 7 ek changes for c ¼ 0:5

Fig. 8 Weight changes for c ¼ 0:5
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schematic of the inverted pendulum. The goal is to keep the

pendulum up in a stable form. To reach to the goal, the

pendulum needs to be swung back and forth to gather

energy. This problem is a difficult and highly nonlinear

control problem [4].

The dynamic of the inverted pendulum for continuous

time is as follows:

€h ¼ 1

J
mglsinðhÞ � b _h� K2

R
_h� K

R
a

� �
ð32Þ

The values of the parameters in this simulation are as

follows [4]:

m ¼ 0:055; g ¼ 9:81; l ¼ 0:042; J ¼ 1:91 � 10�4

b ¼ 3 � 10�6;K ¼ 0:0536;R ¼ 9:5

The state space has two dimensions and consists of the angle

and the angular velocity of the pendulum, i.e., s ¼ ½h; _h�T .

The angle of the pendulum is in ½�p; p� rad (wraps around),

where h ¼ �p points down and h ¼ 0 points up. The velocity

is in the interval ½�15p; 15p� rad/s, and the control action a

(voltage) is limited to the interval ½�3; 3� V. We choose

sample time ðTsÞ equal to 0.005s, and the dynamic of the

system is calculated in consecutive time steps. We use an

action for 10 consecutive time steps and calculate new action

for the next 10 consecutive time steps. In other words, time

step to calculate action and updating weight vector is 0.05s.

The goal is to stabilize the pendulum to point up (i.e., h ¼ 0

and _h ¼ 0). The reward function to reach the goal is as follows:

r ¼ �sTQrews� Rrewa
2; Qrew ¼

5 0

0 0:1

	 

;Rrew ¼ 1 ð33Þ

We set the discount factor to c ¼ 0:98. The exploration rate

should be large enough at the beginning to visit the high

rewards around the goal. Here we update the weight vector

every five time steps (i.e., k ¼ 5).

The state space is partitioned into 6 equidistant cores

partition with triangular membership functions in the both

dimensions. The discrete action sets are made of 7 voltages

A ¼ f�3;�2;�1; 0; 1; 2; 3g. We assume that there is a

local controller that controls pendulum to reach the goal if

�0:05p� h� 0:05p and �0:05 � 15p� _h� 0:05 � 15p.

We use the e-greedy action selection method.

In this experiment, we determine 250 time step to reach

the goal in every episode. The results of 100 distinct runs

of FLSPI are given in Table 2. The used criterions in this

problem are the same as those in boat problem. Here the

maximum number of episodes that agent is allowed to learn

the goal, is 3000 episodes.

The weights in FLSPI converge very fast. Figure 10 shows

that the weights in FLSPI have been converged to their final

amounts in less than 1000 time steps. But the weights in FQL

and FSL that are shown in Figs. 11 and 12 have not been

converged even after 10000 time steps. We repeated this

experiment for several times and deduced that FQL and FSL

cannot converge in this problem. So, the agent could not learn

to reach the goal by using these algorithms, at all.

Histogram of learning duration indexes for FLSPI is

depicted in Fig. 13. As one can see, FLSPI has fast con-

vergence and generally learn in less than 300 time steps.

5.4 Cart–Pole Balancing

It is mentioned earlier, despite the fact that most of the real

problems are in continuous state–action spaces, a few

Fig. 9 A schematic representation of inverted pendulum
Fig. 10 Episodic changes of the first two actions of first rule of fuzzy

least square policy iteration

Table 2 Simulation results Method Avg. DEI Avg. LDI SD (LDI) Failure rate Avg. time (s)

FLSPI 1.87 205.93 506.63 1.84 48.50
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solution approaches are applicable for these problems. In

this section we apply our method to the classic cart–pole

balancing benchmark [17] as it is in continuous state–ac-

tion spaces and compared its results with some new con-

tinuous RL methods (even though they are not in FRL

field). In this problem, the agent should learn how to apply

horizontal force to balance the pole on the cart. A four-

dimensional state space ½x; x0; h; h0� is defined, where x is

the cart horizontal coordinate, x0 is its derivation (cart

velocity), h is the pole angle and h0 is its derivation (An-

gular velocity). State update is done by Equation 34:

h00 ¼ 1

lðM þ m sin2hÞ

�f cosh� m l h0
2

cos h sin h� ðM þ mÞg sin h
h i ð34Þ

where the parameters are as follows: g ¼ 9:8 is the gravity,

M ¼ 1 is weight of the cart, m ¼ 0:1 is the weight of the

pole and l ¼ 0:1 is the length of the pole. We partitioned

state space into three parts in every dimension and used

triangular fuzzy functions. The set {-10, -7, -4, 0, 4, 7,

10} is defined as candidate action set (forces) . We used

rðs; f Þ ¼ 10 � ð1 � cosðhÞÞ � 10�5jjf jj22, from [10] as

reward function and initiate the variables from random

points in every iteration. Time step is set to Ts ¼ 0:02s and

an iteration will be terminated if jxj 	 2:4m or jhj 	 0:2rad.

We start with 0.05 as initial exploration rate in every

iteration and decrease it with the rate of 0.98. Exploration

rate could not be less than 0.0001 in our experiment.

Table 3 shows the average return (sum of rewards) over

all training iterations of on-line FLSPI in comparison with

Deep Deterministic Policy Gradient (DDPG) [10], Reward-

Weighted Regression (RWR) [8], Trust Region Policy

Optimization (TRPO) and Truncated Natural Policy Gra-

dient (TNPG) [20], reported by Ref. [10], based on 2000

iterations training trials.

As it is seen, FLSPI could balance the pole on the cart in

the longest time than other algorithms, on average, in the

training phase. FLSPI could learn to balance the pole after

some iteration and could balance the pole up to 99869 time

step (i.e., 33.29 min) in the learning phase and could bal-

ance it entirely (infinite steps) in the testing phase (after

learning).

Bringing all together, FLSPI has significant efficiency

compared to the others. In addition, it has theoretical

Fig. 11 Episodic changes of the first two actions of first rule of fuzzy

Q-learning

Fig. 12 Episodic changes of the first two actions of first rule of Fuzzy

SARSA Learning

Fig. 13 Histogram of learning duration indexes for fuzzy least square

policy iteration

Table 3 Simulation results

Method FLSPI DDPG TRPO TNPG RWR

Mean return 24826 4634.4 4869.8 3986.4 4861.5
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analysis to prove its performance while most of the other

proposed methods do not have such analysis.

6 Conclusion

In this paper, we presented a FRL method based on LSPI. The

algorithm and mathematical analysis was presented. This

algorithm is learning rate independent and has fast conver-

gence. To evaluate this approach, we compared performance

of FLSPI with two approaches in critic-only FRL, FQL and

FSL, on the well-known boat problem (in off-line form).

Results showed that FLSPI has higher performance and learns

faster than FQL and FSL. The mathematical analysis defined

an error bound for approximate state–action value function

that was introduced by FLSPI algorithm. We used single-

agent obstacle-free environment to show function of FLSPI

error bound theorem. The results showed that error bound was

true for these values and the weights converge very fast.

Also we apply on-line FLSPI and FSL and FQL to the

inverted pendulum problem. Results show that FLSPI has

fast convergence and high performance in this problem but

FQL and FSL cannot converge even after 10000 episodes.

So this problem is an example for diverging FSL and FQL.

In addition, we compared FLSPI with some new continu-

ous RL methods in the well-known cart–pole balancing

benchmark. This experiment also proved FLSPI efficiency.

Generally, FLSPI is suitable for real-time problems and

has high performance and fast convergence.
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