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Abstract- Recently, Distributed Constraint Optimization Problems (DCOP) have been drawing a growing body of 
attention as an important research area in multi agent systems as a large body of real problems can be modeled by 
them. The primary goal of this research is to design a distributed and effective algorithm to solve DCOP. There are 
various criteria that measure the efficiency of DCOP algorithms, but the most efficient algorithm for DCOP is the one 
by which the computation and communication cost is as low as possible and the quality of the solution is high. In this 
paper, we focus on an approximate DCOP algorithm called DALO (Distributed Asynchronous Local Optimization). 
Using the main idea of the DALO algorithm, we propose a new algorithm to  solve DCOP, which exhibits two 
important improvements over the DALO algorithm. First we use a sequential partial approach to select a coefficient 
of leaders to compute the best assignment for agents by which the computation and communication cost decrease in 
the whole DCOP. The second improvement is an evolutionary approach by which the computation and 
communication  burden for each agent decreases. We present some empirical evidences that show our algorithm 
performs better than the DALO algorithm.  
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I INTRODUCTION 

In many practical problems such as resource 
allocation,  planning and scheduling wherein 
coordinating all entities is not possible, the key goal is 
to develop decentralized coordination techniques. 
Multi-agent systems are a popular way  to model the 
complex interactions and coordination required  to 
solve distributed problems [1]. A multi-agent system 
is a  network of agents used to perform distributed 
computation.  Networks of cooperative agents are 
heterogeneous, and not all agents have direct links to 
one another.  Additionally, information is distributed 

throughout the network either due to privacy concerns 
or the impracticality of centralizing. In this network, 
each agent is an autonomous entity with  local 
information and has the ability to perform an action in 
cooperative situations in which agents collaborate to 
achieve  a common goal  Agents need to coordinate 
their activities to accomplish their  collective goals. 
Distributed Constraint Optimization (DCOP)  is a 
common formalism for representing multi-agent 
systems  in which agents cooperate to optimize a 
global objective [2], [3]. 

Mohsen Afsharchi 
Department of Computer Engineering 

University of Zanjan 
Zanjan, Iran 

afsharchim@znu.ac.ir 
 

Maryam Rahmaninia  
Department of Computer Engineering 

 Ghasre-shirin Branch, IAU 
Ghasre-shirin, Iran 

 ma.rahmaninia@gmail.com  
 

Elnaz Bigdeli  
Department of Computer Science 

IASBS 
Zanjan, Iran 

    e_bigdeli @iasbs.ac.ir 
 

Technical Note 

mailto:ma.rahmaninia@gmail.com


DCOP grew out of the field of Constraint 
Optimization  Problem (COP) [4], which was itself 
built upon work from the field of Constraint 
Satisfaction Problems (CSP) [5]. Distributed 
Constraint Satisfaction Problems (DisCSP) were first 
studied by Yokoo and have recently attracted a 
growing body of interest [6]. In DisCSPs, constraints 
simply specify that certain combinations of values are 
legal or illegal. However, in the more expressive COP 
and DCOP formalisms, constraints  specify how 
preferable different combinations of values are by  
associating cost functions with the constraints [3]. 

Distributed Constraint Optimization (DCOP) has 
been applied to different domains. DCOPs are able to 
model the task  of scheduling meetings in large 
organizations, where privacy  needs make centralized 
constraint optimization difficult [7].  DCOPs are also 
able to model the task of allocating sensor  nodes to 
targets in sensor networks, where the limited 
communication and computation power of individual 
sensor nodes  makes centralized constraint 
optimization difficult [9]. Finally, DCOPs are able to 
model the task of coordinating teams of  unmanned 
vehicles in disaster response scenarios, where the  
need for rapid local responses makes centralized 
constraint optimization difficult [10]. 

There are many algorithms that can solve DCOPs. 
The central focus of DCOP algorithms is to design an 
algorithm  which has low computational and 
communicational cost and  produces solutions with 
high quality. It is obvious that to reach more accurate 
solutions for a DCOP, more computations and  
communications are required. Most algorithms try to 
tradeoff  among the cost of computation and 
communication and the quality of solutions. The cost 
of computation and communication is more crucial in 
large-scale domains. Considering this  point, we 
propose an algorithm that can scale up in large scale 
problems. The proposed algorithm is an extended 
version of the DALO algorithm, which works 
efficiently in large scale domains. DALO algorithm 
decomposes a DCOP problem to sub-groups and 
solves DCOP in each sub-group [11]. This algorithm 
uses either a t-distance or k-size criterion to form 
groups. A t-distance or k-size criterion creates large-
sized groups in dense graphs. On the other side in 
each sub-group, a complete algorithm is used to 
compute the best assignment. The computational 
complexity of complete algorithms is exponential in 
the number of variables, since distributed constraint 
optimization is known to be NP-hard [9]. Therefore, 
the computational cost is very high in groups that are 
created with a t-distance or k-size criterion. 
Consequently, it is hard for complete algorithms to 
scale up, because the computation burden might 
increase exponentially as the number of variables 
increase [11]. The problem gets worse because in 
DALO algorithm all agents form groups and try to 
compute the best assignment in their groups. We 
contribute two important algorithmic advances for the 
DALO algorithm. The first is, instead of using a 

complete DCOP solver in each group, we use an 
evolutionary algorithm to find the solution in each 
group. The evolutionary algorithm decreases the 
computational cost by a considerable amount in each 
group. The second is selecting some leaders to 
compute the new assignment in each group instead of 
all leaders. The selection of leaders should be done in 
a way that the quality of solutions gained by their 
computation is high. We propose a simple and 
effective method by which the computation decreases 
and the quality is acceptable.  

The structure of the paper is as follows. In section 
II, formal definitions of DCOP and t-distance optimal 
and k-size optimal solutions are presented. In section 
III, the DALO algorithm and its main issues are 
described. The new algorithm is introduced in section 
IV. An analysis of our new algorithm is presented in 
V. Experimental results of our new algorithm and its 
comparison with the DALO algorithm are depicted in 
section VII. Finally, the conclusion and future works 
are presented in section VIII. 

II. RELATED WORKS 

There are two main categories for DCOP 
algorithms: complete and incomplete. Complete 
algorithms always find a configuration of variables 
that optimizes the global objective function. In 
contrast, incomplete algorithms find semi-optimal 
solutions. ADOPT (Asynchronous Distributed 
OPTimization) is the first complete algorithm for 
DCOP that allows asynchronous concurrent execution 
and is guaranteed to terminate with the global optimal 
solution [9]. There has been extensive research that 
attempted to speed up complete algorithms. Ali et al. 
introduce a framework of different preprocessing 
techniques that are based on dynamic programming to 
speed up ADOPT. Their approach can speed up 
ADOPT by an order of magnitude [12]. Another 
study done by Yeoh et al. introduces Branch-and-
Bound ADOPT (BnB-ADOPT), a memory-bounded 
asynchronous DCOP algorithm which changes the 
search strategy of ADOPT from best first search to 
depth first branch and bound search. This algorithm is 
up to one order of magnitude faster than ADOPT on a 
variety of large DCOP problems [13]. 

The other complete algorithm for distributed 
constraint optimization is DPOP (Dynamic 
Programming Optimization). It works based on 
dynamic programming. It uses a utility propagation 
method that is inspired by the sum-product algorithm, 
which is correct only for tree-shaped constraint 
networks [3]. Some improvements have already been 
discovered for the DPOP algorithms. For example, 
MB-DPOP provides a memory-bounded algorithm 
that trades off the linear message number of DPOP 
with polynomial message size [14].  

Since DCOP is NP-hard [9], as the scale of 
application domain increases, complete algorithms 
exhibit an exponentially increasing coordination 
overhead. Thus, their use in practical applications, 



such as those mentioned above, is severely limited. 
Therefore, many researchers pay more attention to 
incomplete algorithms that decreases the computation 
and communication cost. 

Comparing with complete algorithms, incomplete 
algorithms find semi-optimal solutions and do not 
guarantee the achievement of global optimal solution. 
In incomplete algorithms, agents form small groups 
and then try to optimize solutions within these groups. 
These algorithms decrease the computation and 
communication costs. Therefore, these algorithms can 
be applied to large scale systems and are more robust 
in dynamic environments. It should be noted that in 
some domains, the best optimum solution is required 
and complete algorithms should be used to reach the 
best solution.  

Incomplete algorithms can be categorized in two 
groups. The first group of incomplete algorithms 
provide guarantee on the quality of the solutions they 
compute. The second group of incomplete algorithms 
do not provide any guarantees on the quality of the 
solutions. Guarantees on the quality is important in 
some domains. 

Incomplete algorithms such as MGM (Maximum 
Gain Message) [6] and DSA (Distributed Stochastic 
Algorithm) [15] are the examples of algorithms that 
do not provide any guarantee on the quality of 
solutions. These two algorithms use the maximum 
gain approach to solve DCOP. In MGM, each agent 
broadcasts a gain message to all its neighbors and an 
agent is allowed to act if its gain message is larger 
than all the gain messages it receives from all its 
neighbors. For DSA, each agent generates a random 
number from a uniform distribution on [0, 1] and acts 
if the number is less than a threshold p. 

Max-sum as an incomplete algorithm is a very 
promising technique for DCOP because it provides 
solutions close to optimality while requiring very 
limited communication overhead and computation. 
The max-sum algorithm belongs to the Generalized 
Distributive Law (GDL) framework. While many 
incomplete algorithms fail to provide any guarantees 
on the solution quality in general settings, this 
algorithm provides guarantees on the quality of 
solution [16]. 

In the class of incomplete algorithms, there are 
algorithms called k-optimal. k-optimal algorithms 
guarantee solutions that cannot be improved when 
any group of k or fewer agents change their decision. 
Many incomplete algorithms, such as MGM [17] and 
DSA [15] described above, yield 1-optimal solutions. 
The other version of MGM1 is MGM2 [18], which 
provides 2-optimal solutions. 

The KOPT algorithm is the only incomplete 
algorithm that works for arbitrary k [19] and provides 
a guarantee on the quality of solutions. There is a 
detailed investigation in the field of k-optimal 
algorithms. Pearce and Tambe presented the first 

known guarantees on solution quality for k-optimal 
solutions [20]. They provided reward and structure-
independent guarantees on solution quality for any k-
optimal DCOP assignment. In addition, they 
presented tighter guarantee for ring and star graphs in 
their work. Two main properties of k-optimal  
solutions are introduced in [21]. The first one is the 
worst case guarantee on the quality of the k-optimal 
solution in a DCOP. The second one is the worst-case 
guarantee on the  number of k-optimal solutions that 
can exist in a DCOP. A  close view to the k-optimal 
solution set can be found in [21].  Here, by using 
coding theory, they provide an upper bound for the k-
optimal solution set. Furthermore, Vinyals et al. 
recently  introduced the C optimality framework that 
generalizes both  k-optimality and t-optimality by 
providing quality guarantees  for local optima in 
regions that can be defined by arbitrary criteria [25]. 

Another incomplete algorithm for DCOP is DALO, 
which  works based on t-distance optimality [11]. In 
this algorithm,  each agent forms a group with other 
agents with a distance of  t hops [11], [22]. This 
algorithm provides a guarantee on the  quality of the 
solution based on the t-distance criterion. 

 Recent works are extending the whole picture of 
DCOP to  asymmetric world. In asymmetric DCOPs 
different agents may  have different valuations for 
constraints that they are involved  in. This new 
framework bridges the gap between multi-agent  
problems which tend to have asymmetric structure 
and the  standard symmetric DCOP model. The 
benefits of ADCOP model over previous attempts to 
generalize the DCOP model  are discussed in [29]. A 
very comprehensive review of DCOP could be find in 
[27]. 

Our proposed algorithm is an efficient incomplete 
algorithm that provides a guarantee on the quality of 
solutions and can be  applied to large scale domains, 
because it has low computation  and communication 
cost. 

III. BACKGROUND 

In this section, we will provide some basic 
definitions about DCOP and t-distance optimality. 

A. Distributed Constraint Optimization (DCOP) 

A DCOP is defined by a set of variables 
V={v1,…,vn}, a set of discrete finite domains for each 
variable D={D1,…,Dn}, and a set of constraints 
C={c1,…,cq} between the variables. Each variable is 
controlled by a separate agent that can communicate 
with other agents. 

Assuming each agent controls a single variable, we 
will use the terms agent and variable interchangeably. 
The value generally represents an action that an agent 
should perform as part of larger team. A joint 
assignment A={a1,…,an} specifies a value for each 
variable, in which ai is the value of agent i. 



Constraints exist between subsets of these variables 
that determine costs and rewards to the agent team 
based on the combinations of values chosen by their 
respective agents. Constraints convey how the values 
taken on by different variables affect one another. 
Variables vi and vj are considered neighbors if they 
share a constraint, and only neighbors can directly 
communicate with one another. In DCOP formalisms, 
constraints specify how preferable the different 
combinations of values are by associating cost 
functions Fij associated with the constraints. This 
paper only considers binary constraints, which means 
that each constraint has two variables. A cost function 
Fij:Di × Dj R takes the values of variables vj and vj 
as an input and returns a value as a non-negative 
number for a constraint. 

The utility of agent i for assignment A is: 

Ui (A) = � Fij �𝑎𝑎i ,𝑎𝑎 j �

 

vj

 

Where   𝑣𝑣𝑖𝑖 ←  𝑎𝑎𝑖𝑖 , 𝑣𝑣𝑗𝑗 ← 𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗  ∈ 𝐴𝐴                 (1) 

It means that the utility of the ith agent is the sum of 
the cost functions of all constraints to which an agent 
belongs. 

The goal is to choose values for variables such that 
a given objective function is maximized. The 
objective function is the sum over a set of cost 
functions, or valued constraints. Thus, the objective is 
to maximize: 

R (A) = � Fij �ai, a j �

 

(vi  ,vj )∈V

 

Where   𝑣𝑣𝑖𝑖 ←  𝑎𝑎𝑖𝑖 , 𝑣𝑣𝑖𝑖 ← 𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗  ∈ 𝐴𝐴                 (2) 

R(A) is the solution quality for the joint assignment 
A [9], [23]. 

Constraint reasoning problems are frequently 
represented diagrammatically, with the variables 
represented by nodes and the constraints represented 
as links between nodes in the graph, which is called 
the constraint graph. The optimal assignment for this 
DCOP with 6 variables and 7 constraints and an 
identical cost function is A = (1,1,1,1,1,1) (see Figure 
1). 

 

Fig. 1. The constraint graph of an example DCOP with six binary 
variables. Each constraint has the same cost function. 

 
 

B.  t-distance Optimality 

Definition 1: For two different assignments A and 
𝐴𝐴′ ,  D(A, 𝐴𝐴′  ) is: 

D(A, 𝐴𝐴′  ) ={𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 | 𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑖𝑖′  , 𝑣𝑣𝑖𝑖  ←  𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴, 𝑎𝑎𝑖𝑖′  ∈
𝐴𝐴′}       (3)  

In other words, D is a deviating group between two 
assignments A and 𝐴𝐴′ . 
 

For example, in Figure 2, for the given assignment 
(1,1,1,0,0) and (0,0,0,0,0), the deviating group is 
D((1,1,1,0,0) , (0,0,0,0,0)) = {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 }. Thus, the 
distance between the two assignments is the 
cardinality of the deviating group which is 3. 

For a pair of variables vi and vj , let 𝑇𝑇 (vi , vj ) be the 
shortest distance between them in the constraint 
graph. Then 𝛷𝛷t (vi) = { vi|T (vi , vj ) ≤ t, vi, vj ∈ V} 
denotes a set of variables that can be reached from vi 
within t hops. 

Definition 2: A DCOP assignment A is t-distance 
optimal if R(A)≥ R(𝐴𝐴′ ) for all 𝐴𝐴′ , where D(A, 𝐴𝐴′ ) 
⊆  𝛷𝛷t (vi) for some vi ∈ V (see [11], [22]). 

 

 

 

 

 

 

Fig. 2. An example DCOP with five binary variables. Each 
constraint has the same cost function. 

Example: Consider the graph in Figure 2. Given t = 1, 
1-distance groups for all variables will be: 𝛷𝛷1(v1) 
={v1,v2,v3}, 𝛷𝛷1(v2) = {v1, v2, v4, v5}, 𝛷𝛷1(v3) = {v1, v3, v4}, 
𝛷𝛷1 (v4) = {v2 , v3,  v4,  v5} and 𝛷𝛷1(v5) = {v2, v4, v5}. In this 
example, A = (0, 0, 0, 0, 0) with R(A) = 6 is 0-
distance optimal. Assignment A is 0-distance optimal, 
because if every agent changes its value, then the 
solution quality will decrease. Assignment A is not 1-
distance optimal. Moreover, this assignment is not 2-
distance optimal, because there is an assignment 𝐴𝐴′ ′  = 
(1, 1, 1, 1, 1) with R(𝐴𝐴′ ′) = 12 for which its utility is 
more than A. 
 
C. k-Optimality 
 
A DCOP assignment A is k-optimal if R(A ≥R(𝐴𝐴′ ) 

for  all 𝐴𝐴′ for which | D(A, 𝐴𝐴′ ) |≤ k, Where | D | 
denotes the cardinality of set D (see [23]). 
Example: Consider the graph in Figure 3 in which V 
= {v1, v2, v3, v4} are variables with binary domain. In 
this example, constraints are c1 = {v1, v2}, c2 = {v1, v3}, 
c3 = {v2, v4}, c4 = {v3, v4}. A1 = {0, 0, 0, 0} is a 1-optimal 
assignment with R(A1) = 4. This assignment is 1-
optimal because no unitary change in assignment A1 

improves the reward. But it is not a 2-optimal 

 



assignment, because if one pair of agents changes 
their values simultaneously to 1, the solution quality 
increases. Assignment A2 = {1, 1, 1, 1} with R(A2) = 8 
is a 4-optimal assignment and is also the best 
assignment. 
 

 
Fig. 3. An example DCOP with four binary variables. Each 

constraint has the same cost function. 
 

IV. DALO ALGORITHM AND ISSUES 
 
DALO (Distributed Asynchronous Local 
Optimization) is an algorithm which can compute 
either k-size or t-distance optimal solutions for any 
value of k or t [22]. 

The DALO algorithm has three phases. In phase 
one, agents send initialization messages to nearby 
agents, to find all of the k or t groups in the constraint 
graph and assign each group a unique leader. In phase 
two, based on the information gathered in the 
previous phase, all leaders compute a new optimal 
assignment using a centralized variable elimination 
algorithm in parallel. In phase three, if the new 
assignment improves the solution quality, the group 
leader attempts to set the new assignment. When all 
the leaders try to set their assignments, there will be 
conflicts among overlapping groups, which are 
resolved by an asynchronous locking and 
commitment protocol. 

 
DALO Issues 
Although DALO is an effective algorithm for solving 
DCOP problems, it suffers from some drawbacks. 
Using k or t as a criterion to create groups may 

produce groups with a large number of nodes. As it is 
explained for the DALO algorithm in phase two, a 
complete algorithm is used to solve DCOP. All group 
leaders compute new optimal assignments for their 
groups in parallel. A leader node uses a centralized 
variable elimination algorithm to solve the sub 
problem for the local group. The computational 
complexity of a complete DCOP solver is exponential 
in its number of variables. By increasing k and t, the 
number of agents in a group increases, therefore, 
using a complete DCOP solver will not be tolerated 
from a time and space point of view. 
The second problem is that all leaders start to 

calculate the best possible assignment for their group 
members, but at the end of each round, to avoid 
conflicts among leader assignments, some of these 
leaders are chosen and their assignments are set. It 
means that each agent belongs to different groups, 
and each agent should finally choose one of the 
leaders’ assignments. Based on the DALO algorithm, 
if all agents commit to the new assignment, then the 

leader set the assignment. As it is clear, finding the 
best assignment in each group needs a large number 
of messages to be sent and received, which increases 
the complexity of the algorithm. It is more efficient 
not to compute new assignments for leaders that do 
not have set assignments, as this will reduce the 
computational load. 
In this paper, we try to solve these problems. To solve 
the first problem, we use a genetic approach instead 
of using a centralized variable elimination algorithm. 
This approach decreases the computation time 
substantially. To overcome the second problem, we 
utilize a partial approach in which only a group of 
leaders are selected to compute the best assignment 
instead of all of them. The partial method is an 
effective method to reduce the communication cost 
while keeping the solution quality almost the same. 
Using the partial approach, the number of messages 
passed among agents decreases by dismissing the 
leaders whose assignments will be ignored at the end 
of each round. Consequently, there will be a 
substantial decrease in computational and 
communication time in each round. 

V. EP-DALO ALGORITHM 
In this section, we present our new algorithm called 

EPDALO (Evolutionary Partial DALO). The EP-
DALO algorithm is a scalable algorithm to solve 
distributed constraint optimization problems.  
This algorithm has three phases. 
• Initialization: In phase one, each agent sends 

information to the agents of its group that is 
constructed with the given t or k. 

• Computing the Best Assignment: Computing the 
new assignment has two steps: 
– Leader Selection: Some leaders are selected to 

compute a new assignment for their groups 
based on the sequential partial approach. 

– Computing the best assignment using the 
genetic algorithm: Using the genetic approach, 
every agent calculates the best assignment to 
its group members. 

• Set the assignment: In phase three, the conflicts 
among overlapping groups are resolved, and the 
new assignment is set.  

Phase one is executed once whereas the other 
phases are repeated until the new assignments show 
no further improvement. 

 
A. Initialization  

  In this phase, the leader, which is given t or k 
starts to construct its group. At first, every agent 
sends a message containing all its constraints to all 
agents in its group. Then, it chooses an initial value 
from its domain and broadcasts it to group members. 
Consider the constraint graph in Figure 1: the groups 
of agent 4, which are constructed using t = 2 and k = 
2, are shown by solid and dash lines, consecutively. 

 
B. Computing the Best Assignment 

In this phase, the leader of each group calculates the 
best possible assignment by which the quality is 
maximized. There are two issues that should be 
mentioned in this phase. 



The first issue is about leaders that have permission 
to compute new assignments in each round. Based on 
our discussion in section III, in phase 2 of the DALO 
algorithm, all leaders calculate a new assignment for 
their group members whereas some of these 
assignments will be ignored to avoid conflicts among 
leader assignments. Hence, it is better to have some 
leaders not compute new assignments. To this end, 
the permission to calculate a new assignment is 
granted to some leaders in each round. The leaders 
with permission to compute the new assignments are 
called active leaders. We use the partial sequential 
approach to select leaders to be activated. 

The second issue is about the computation that each 
leader performs to find the best assignment. A leader 
node uses a centralized variable elimination algorithm 
to solve the sub problem for the local group with 
exponential computational cost. A method with lower 
computational cost should be used to reduce the 
computational load. A genetic algorithm is used to 
find the best solution in each sub-graph. 

Therefore, for computing the best assignment at 
first by using the partial sequential approach, some 
leaders are selected, and then the selected leaders 
calculate the best assignment through the genetic 
approach. 

 
1) Selecting Leaders by Partial Sequential 

Approach: As it is described in the DALO algorithm, 
there are n different groups for a graph with n agents. 
Consequently, here are n leaders. We define the index 
set L = {1, 2,…, n}. For a given h, the index set L is 
divided into h subsets S ={S1, S2, … , Sh}. Each subset 
includes the agent’s ID which should be activated. In 
each round, one of the Si is selected according to a 
pre-defined approach and the leaders in Si run the 
genetic algorithm in a synchronous manner. The main 
problem is assigning agents to subsets { S1,… , Sh }. 
The best approach to this end is the one that assigns 
leaders to subsets that by activation of their leaders 
solution quality increases in each round. This 
approach is the most desirable one but in return 
increases the complexity of algorithm. Leaders’ 
selection can be performed by a sequential approach. 
This simple method decreases the communication 
time substantially. 

In the sequential approach, S1 is selected in the first 
round, S2 in the second round and Sh in the hth round, 
and in round h + 1, S1 is selected again. Consequently, 
after h rounds, all subsets are selected exactly once. In 
this approach, at a given round r, one of the subsets 
S1, S2, …  , Sh is chosen in a sequential fashion. After 
h rounds each subset has been selected only once. 

In this method, we assume that in each round, each 
leader in a network synchronously checks if: 

 
l % h = r % h                                 (4) 

 

Where l is the leader’s ID and r is the number of 
round. Then, this leader computes a new assignment. 

 
As an example, consider the graph in Figure 1. For 

h=3, set S will be: 

S = {{Ag1,Ag4}, {fAg2,Ag5},{Ag3,Ag6}} 
 

Based on the above mentioned approach, in round 
1, {Ag1,Ag4} are selected, in round 2, {Ag2,Ag5} are 
selected, and in round 3, { Ag3,Ag6} are selected, and 
the selection process continues in the same fashion. It 
is obvious that in the end of the hth round, all subsets 
are selected exactly once. Obviously, different 
methods can be used in the sequential approach. 

 
2) Calculating the Best Assignment : The Genetic  
Genetic Algorithms (GA) are adaptive methods and 

have Approach :In the second phase of our algorithm, 
each leader starts to find the best assignment for its 
group. As previously mentioned, a leader node uses a 
centralized variable elimination algorithm to solve the 
sub-problem for the local group. The computational 
time of a complete DCOP solver is exponential. A 
DCOP is an optimization problem, and nowadays, 
evolutionary algorithms, particularly Genetic 
Algorithms (GAs), are considered one of the best 
known algorithms for solving optimization problems. 
Instead of using a centralized variable elimination 
algorithm, we use genetic algorithms to find the best 
assignment centrally 

Genetic Algorithms (GA) are adaptive methods and 
have been applied to optimization problems in many 
fields [24]. For the genetic approach, a leader starts 
out with an initial population of possible solutions 
called individuals. Each individual is represented as a 
chromosome using a form of encoding. These 
chromosomes are evaluated for their fitness. The 
fittest solutions are those that are more appropriate for 
the problem. Based on their fitness, certain 
chromosomes in the population are selected for 
reproduction. These selected individuals are parents 
that are manipulated by crossover and mutation to 
create offspring. The repeated application of these 
genetic operators on the fittest chromosomes results 
in an increase in the average fitness of the population 
over time, and thus result in the identification of 
improved solutions for the problem under 
investigation.  

Before we apply a genetic algorithm to a distributed 
constraint optimization problem, we will show how 
chromosomes are represented and how the fitness of 
chromosomes are evaluated. 

In this paper, each assignment for a group is 
considered as a chromosome. For group 1 in Figure 2, 
A= (0, 1, 0) is a possible assignment and also a 
chromosome in the genetic approach in which ai 

indicates the value for the agent i. As we described in 
section II, the value of each agent is chosen from a 
binary domain. Therefore, each chromosome is a 
string of binary values indicating an assignment for a 
group. The fitness of a chromosome is evaluated by a 
fitness function. The fitness function that is used in 
this paper to evaluate the fitness of a chromosome is 
the solution quality, which is defined in section II. 
Solutions with high quality are considered the fittest 
ones. Consider the graph in Figure 2: between the two 
assignments A = (0, 0, 0, 0, 0) with R(A) = 6 and 𝐴𝐴′= 



(1, 1, 1, 1, 1) with R(𝐴𝐴′ ) = 12, 𝐴𝐴′  is the fittest 
solution. 

Finding the best assignment using the genetic 
approach has four phases: 

 

Initialization: In this phase, an initial population is 
generated. This population is a set of chromosomes. A 
chromosome is a possible assignment for each group. 
The chromosomes are equal in size with the group 
and are a string of binary values. Element i in the 
string indicates the value for Agenti. Consider, each 
agent chooses a value from a binary domain. 
Therefore, for a group with m agents, there will be 2𝑚𝑚  

assignments. Generally, the population is generated 
randomly, and is selected from all possible solutions 
for a problem. The size of the population is different 
for each group and depends on the size of the group. 
It is also considered constant during the execution of 
the algorithm. 
 
• Selection: To generate the next population, a set 

of solutions is selected from the existing 
population. Generally, the main criterion for 
selection is fitness, and individuals that are high fit 
will be selected to generate the next generation. 
As mentioned, the fitness of each individual is 
evaluated by the fitness function, which is the 
solution quality in this algorithm. According to 
this criterion, a proportion of the current 
population with high solution quality will be 
selected to generate the next population. However, 
this paper uses the stochastic method. This method 
presents opportunities for less fit solutions. Two 
individuals are chosen to act as parents. One of the 
parents is chosen amongst the best solutions in the 
population, while the other is randomly chosen 
from the whole current population. 
 

• Reproduction: In this phase, the next population 
is generated. Two chromosomes are selected to 
generate new chromosomes. Crossover and 
mutation are two basic operators of GA that can 
generate new chromosomes for the next 
population. The performance of GA depends on 
these operators. There are many different types of 
crossover and mutation. Type and implementation 
of operators depend on the encoding and also on 
the problem. 

– Crossover: We use the single point crossover in 
our implementation. In single point crossover, 
one crossover point is selected, the binary string 
from the beginning of a chromosome to the 
crossover point is copied from one parent, and 
the rest is copied from the second parent [26]. 
Consider the graph in Figure 2. For the group of 
Agent1, two assignments A1 = (0, 1, 0), A2 = (0, 
0, 1) are the two parent chromosomes. Using a 
single point crossover and considering i = 2 as a 
crossover point, the offspring will be A3 = (0, 1, 
1). 

 
– Mutation: A mutation operator simply inverts 

the value of the chosen chromosome. The 

mutation operator is used as a slight 
modification to the offspring. We set mutation 
probability into 0.007 to mutate values for an 
individual. 

 

• Chromosome Evaluation: In this phase, newly 
generated offspring are added to the population 
and then the worst individuals are removed from 
the population. Depending on whether they are 
better than the worst individuals in the population, 
the new offspring may or may not survive to join 
the new population. Mainly, some solutions with 
lower utility are selected since using these 
solutions to generate offspring sometimes leads to 
high fit chromosomes. 

Population generation is repeated until the 
algorithm converges to the optimal solution. 

 
A. Set the assignment 
Having found the best assignment for a group, the 

leader attempts to implement the new assignment by 
sending out requests. This can cause conflicts among 
overlapping groups, which is resolved by an 
asynchronous locking and commitment protocol in 
our approach [11]. 

 
VI. PARAMETER ANALYSIS 

 
In the partial sequential approach, based on the 

description in IV-B1, a subset that consists of leaders’ 
ID is selected in each round. The number of subsets h 
is an important parameter in this algorithm and 
influences its computational complexity, solution 
quality and number of rounds. 
In set S = {S1, …  , Sh}, increasing h means 

increasing the cardinality of S. In a graph with n 
agents, there are�𝑛𝑛

ℎ
� leaders in each subset. Hence, by 

increasing h, the number of leaders in each subset will 
be decreased. As it is described, in each round, a 
subset is selected and if the number of leaders in a 
subset decreases, the number of leaders that are 
activated in each round would be few. Therefore, the 
number of leaders that compute new assignments are 
few and as a result, the communicational cost 
decreases. On the other hand, increasing h decreases 
the solution quality. Increasing h decreases both the 
number of activated leaders in each round. Hence, the 
number of new assignments that are computed will be 
decreased, and to reach the specified quality, more 
number of rounds will be needed. 
According to the above description, parameter h 

should be chosen in a way that with few numbers of 
messages and rounds, the algorithm converges to a 
solution with high quality. If we consider m as the 
maximum number of messages passed in each group, 
the total number of messages that are passed in each 
round of the DALO algorithm for the whole graph 
would be m × n. Consequently, the total number of 
messages after r rounds would be: 

MDALO = n × m × r                                       (5) 
 

In the EP-DALO algorithm, this amount would be: 
MEP-DALO = 𝑛𝑛

ℎ
 × m × r'                                 (6) 

 



Where M is the total number of messages. 
We introduce parameter 𝛽𝛽 to compare 

communicational cost of DALO and EP-DALO with 
regard to parameter h. 

𝛽𝛽 = MEP−DALO

MDALO 
                                                     (7) 

Based on our experiment, depending on the structure 
of the graph, the number of rounds in DALO and EP-
DALO are not much different. So, we ignore r and 𝑟𝑟′  
with a good approximation and consider 𝑟𝑟

𝑟𝑟′
 ≈ 1 , by 

sequential approach, the number of messages passed 
among agents in each round decreases by 1

ℎ
 . 

An example is given to show how the best value for 
h can be chosen. For a graph with n = 22, different 
values for parameter h are chosen to reach a solution 
with the highest possible quality and a low 
computational complexity. Figure 4 depicts 𝛽𝛽 vs. h. It 
is verified that h should be balanced according to the 
number of messages, the solution quality and the 
number of rounds. As it is clear, up to h=10 in the 
new algorithm the communicational complexity is 
decreased, whereas the solution quality is almost the 
same as the DALO algorithm. For h > 10, number of 
rounds should be increased to reach the quality of the 
DALO solution. 

 
 

Fig. 4. The best possible value for h is the minimum of the 
diagram. 

 

VII. EVALUATION METRICS 
Different metrics are used to evaluate DCOP 
algorithms. To evaluate the proposed algorithm, 
we use four different metrics. The first three 
metrics are introduced in [22] and [28] and the 
forth one is used for evaluation in [19] and [23]. 
These metrics are: 
• Number of Rounds (NR): The dominant 

metric for the evaluation of DCOP algorithms is the 
number of synchronous rounds [30]. A round is 
defined as one unit of an algorithm progress in 
which all agents, in parallel, process their incoming 
messages, perform any required computation, and 
send their outgoing messages. 
• Communication Load (CL): In each round, 

every agent communicates with others due to two 
reasons. First, to compute the best assignment, each 
agent needs the constraint of others, therefore, 
agents send messages containing constraints to 
other agents. Sending constraints is done only one 
time in the beginning of the algorithm. Since this 
kind of communication is not repeated during 

algorithm execution, we do not consider the time 
required for this communication in computing the 
computational load. The second reason is that, at 
the beginning of each round, each agent sends its 
value to the members of the groups to which it 
belongs. Therefore, to solve DCOP, each agent 
needs to send and receive lots of messages. 
Algorithms with a low number of messages are 
considered more applicable.  
In our experiments we use two metrics, 
communication load and communication burden. 
The total number of messages passed in each round 
in the whole DCOP is the communication load in 
the DCOP algorithm and the communication 
burden for each agent is the number of messages 
sent by each agent after R rounds. e the 
computational cost in a round, we  
• Computational Cost (CC): In order to measure 

use concurrent constraint checks. A constraint 
check is the act of evaluating a constraint in the 
problem by comparing the value of one variable 
to another variable in the problem. Let cc(vi, r) 
be the number of constraint checks performed by 
agent vi in round r. Then, the computation time 
of round r is defined as: 

 

Computation time in round r =   𝑐𝑐𝑐𝑐 (𝑣𝑣𝑖𝑖 , 𝑟𝑟) × 𝑡𝑡𝑣𝑣𝑖𝑖∈𝑉𝑉
𝑚𝑚𝑎𝑎𝑚𝑚       (8) 

Where t is the time required for one constraint check. 
The maximum overall agents is used because the 
agents are conceptually executing in parallel. The 
length of a round is determined by how long the 
longest running takes to complete. 
The other measure that we use is the total number of 
constraint checks performed by agent vi in R rounds. 

𝑐𝑐𝑐𝑐(𝑣𝑣𝑖𝑖) = �𝑐𝑐𝑐𝑐 (𝑣𝑣𝑖𝑖, 𝑟𝑟) × 𝑡𝑡
𝑟𝑟=𝑅𝑅

𝑟𝑟=1

                                                (9) 

Indeed, this metric shows the computational burden 
that each agent has to solve DCOP. 
• Solution Quality (SQ): The other metric 
that we use in this paper to compare the algorithms 
is the quality of solution, as introduced in section II. 
• (Gain,#Locked Variables): The tuple 
(Gain,#Locked Variables) analyzes the 
performance of the algorithm on local groups. The 
gain is the quality of group and the #Locked 
Variables is the number of variables that are  

locked to set the new assignment. 
All these metrics are utilized to compare DCOP 
algorithms. The main contribution of this paper is to 
reduce the algorithms’ communication load and 
computational cost. Since the computation and 
communication cost are not same in the compared 
algorithms, the number of rounds is considered 
identical for both algorithms to compare the 
algorithms in the same condition. The fourth metric is 
considered to prove by decreasing CL and CC, the 
quality of solution is not decreased. 
 

 

VIII. EXPERIMENTAL RESULT 
 

We considered two different domains for our 
experiments. The first is the standard graph-coloring 



scenario and the second is the domain of the meeting 
scheduling problem.  

In distributed meeting scheduling problem, groups 
of researchers work in different locations and 
therefore need to meet to cooperate on a joint project. 
These researchers have various preferences over the 
time and place of the meeting. Considering 
researchers are in different locations, there are costs 
associated with traveling to meetings. The problem is 
to maximize the global sum of each researcher’s 
satisfaction with the schedule, while ensuring that the 
travel costs accrued by researchers do not exceed the 
local travel budget for their research group. 

 
TABLE I. COMMUNICATIONAL BURDEN FOR EACH 

AGENT FOR DIFFERENT k,t. 
 

Graph (n;D; t=k) DALO 
algorithm 

EP-DALO 
algorithm 

(10,0.2,k=2) 88.2 49.3 
(10,0.4,k=1) 133 72.2 
(10,0.6,k=2) 113.4 58.8 
(50,0.2,k=3) 491.62 162.62 
(50,0.4,k=5) 1275 427 
(50,0.6,k=5) 1984 636 
(100,0.2,t=6) 1261 300 
(100,0.4,t=4) 423 106 
(100,0.6,t=6) 847 186 

Average iscrepancy               (0.69) 
 

A graph coloring problem, consists of a graph and a 
set of colors, and its goal is to assign each vertex a 
color such that the number of adjacent vertices with 
the same color is minimized. As a DCOP, there is one 
agent per vertex that is assigned to decide the 
associated color. 

We performed experiments on different graphs with 
different structures. Structures of graphs are chosen 
arbitrary and no special structure is used to prove the 
efficiency of the proposed algorithm for any structure. 
Our experiments use different graphs with sizes of n 
= 10, 50, 100. The density of graphs is considered D 
= {0.2, 0.4, 0.6} and parameters k and t for creating 

groups are considered t = 1, 2, 3, 4, 5, 6 and k = 1, 2, 
3, 5, 10, 15. Each arbitrary graph used in the 
experiment is shown by a tuple (n,D, t/k). Therefore, 
the tuple (50, 0:4, 2) is an arbitrary graph with a size 
of 30 and a density of 0:4 for which groups are 
created using t = 2 or k = 2. For each tuple (n ,D, t/k), 
we create 15 different structures with size of n, 
density of D, and parameter t/k. The results that are 
shown for each tuple are the average of the results for 
15 different structures. We use the same initial 
assignment for both algorithms. The stopping 
criterion used to terminate the running of the 
algorithms is the number of rounds. 

As stated before, the main goal of this paper is to 
show sthat our algorithm decreases both 
Computational Cost and Communication Load. To 
make a fair comparison, we should prove that the 
other parameters do not change under our new 
approach. The main concern is the solution’s quality. 
It needs to be proved that by decreasing computation 
and communication, the quality of the solution will 
not change too much. It will be shown in the 
following section that the solution quality dose not 
change very much in EP-DALO in comparison with 
DALO. As the experimental results show, EP-DALO 
decreases the computational cost and communication 
load and it can be concluded that our proposed 
algorithm is more efficient than the DALO algorithm. 

The results shown in the following are mainly the 
results of the graph coloring problem. The results of 
the meeting scheduling problem are depicted in 
Tables III and IV. 
A. Efficiency 

We present the empirical results from our 
experiments which used two different incomplete 
algorithms for DCOP, DALO and EP-DALO. We 
illustrate that EP-DALO outperforms the DALO 
algorithm in which groups are created based on 
parameters t and k. In addition, by comparing 
EPDALO with DALO, we show that the speed-up 

 
Fig. 5. Average number of messages passed per cycle required to find the 

optimal solution for graphs with size 50 and different k and t. 

 
Fig. 6. Average number of messages passed per cycle required to find the 

optimal solution for graphs with size 100 and different k and t. 

 

 

 



comes from two sources: a) selecting some leaders to 
compute the best assignments instead of all them and 
b) using an evolutionary method that computes the 
new assignment in a shorter time. 
1) Communicational Load (CL): Figures 5 and 6 
show the average total number of messages sent by all 
agents per cycle of execution with DALO and EP-
DALO on the graph coloring problem. As the number 
of agents is increased so is the number of messages 
sent per cycle. Diagrams show the results for 
constraint graphs with size n = 50, 100 and various t 
and ks. 

Let’s consider graphs with size 50, density 0.4 and 
k = 5: the number of messages is 436 for EP-DALO, 
and DALO have 1372 messages, which show that EP-
DALO decreases the number of messages sent per 
cycle by 68% (See Figure 7). In addition, EP-DALO 
algorithm is more efficient for larger t and k in all 
above mentioned graph sizes. The justification is 
straightforward. Larger t and k means each group has 
a larger number of agents which leads to a larger 
number of constraints in each group and more 
communication to find the best assignment. For 
example, in Figure 6, for graphs with tuple 
(100,0.6,t=6), the number of messages is 239 by the 
EP-DALO algorithm and is 1239 by the DALO 
algorithm. The analysis is the same for various 
densities in all graphs. By increasing density both the 
number of constraints in each group and the 
communicational load increase. 

Figure 6 shows how DALO and EP-DALO scale up 
with an increasing number of agents. 

 
TABLE II. COMPUTATIONAL BURDEN FOR EACH AGENT FOR 

DIFFERENT t,k. 
 

Graph (n;D; t=k) 
EP- 

DALO 
algorithm 

DALO 
algorithm 

(10,0.2,k=2) 7.56 2.88 
(10,0.4,k=1) 9.12 4.37 
(10,0.6,k=1) 11.4 4.18 
(10,0.6,k=2) 6.44 2.05 
(50,0.2,k=3) 4.60 0.72 
(50,0.4,k=3) 5.71 1.08 
(50,0.6,k=3) 4.95 0.93 
(50,0.6,k=5) 8.92 1.29 
(100,0.2,t=4) 10.101 2.002 
(100,0.2,t=6) 22.11 3.54 
(100,0.6,t=4) 34.125 1.18 
(100,0.6,t=6) 34.05 4.46 

Average Discrepancy           (0.81) 
 

 
The results in Figures 5-6 show that EP-DALO 

significantly outperforms both DAL-t and DALO-k 
on problems with densities 0.4 and 0.6. The decrease 
by EP-DALO over DALO is 72% on average. 

The result for communicational burden is shown in 
Table I. The computational burden for each agent 
decreases by 69% in the EP-DALO algorithm. 

2) Computational Cost (CC): The EP-DALO 
algorithm decreases both measures, which are the 
required time for computation in each round and the 
time of computation during algorithm execution for 

each agent. These parameters are measured by 
elapsed CPU time in each round and after r rounds. 

The results for graphs with n = 50, 100 are depicted 
in Figures 7 and 8. The results in these figures depict 
the average computational load for R rounds. For 
example, tuple (100, 0.4, k = 10) has an elapsed CPU 
time of 7.2 seconds for DALO whereas this parameter 
for the EP-DALO algorithm is only 4:8 seconds. As 
the results show, EP-DALO is more efficient by 
increasing k and t and in dense graphs. The reason is 
the same as the above mentioned reason in 
communicational load. The larger number of agents in 
groups means the larger communication load and 
computation cost. 

As the size of active agents in a group increases, the 
elapsed CPU time of the DALO algorithm increases 
exponentially, but with the EP-DALO algorithm, the 
time increases polynomially. The difference between 
the result of running two algorithms for t = 3 and t = 
5 clarifies the efficiency of the algorithm. Consider 
the tuple (50, 0.2, t = 3, 5) in which the size of the 
graphs is 50, the density is 0.2, and the distance of 3, 
5 is used to create groups. In the graphs with t = 5, the 
size of groups is more than graphs with t = 3, so 
computing all possible assignments and finding the 
best assignment will be complicated. The EP-DALO 
algorithm will decrease the computational cost by 
53% for t = 3 but by 67% for t =5. 

The other important point which is clear in the 
results is that in dense graphs, the proposed algorithm 
is more efficient. As it is shown in Figure 8, for 
graphs with size n = 100 and t = 6 and density D = 
0.6, computational cost is decreased by 81% and for 
the same graphs with density D = 0.2, it is decreased 
by 64%. 

The computation burden for each agent is an 
important factor, which is decreased by a considerable 
amount by our proposed algorithm. 

Table II depicts the computation time of each agent 
after r rounds. The result for each tuple is the average 
of computation time of agents in graphs with size n. 
In the graphs with the tuple (100, 0.2, t = 4), the time 
spent by an agent for computation after 91 rounds is 
10.101 in the DALO algorithm and 2.002 in the EP-
DALO algorithm. It is obvious that using EP-DALO 
decreases the computational burden in considerable 
amount in each round and after R rounds. According 
to the results, the computational burden for each agent 
decreases by 81% in the EP-DALO algorithm in 
comparison with the DALO algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 

 



 

TABLE III. RESULTS FOR COMPUTATION TIME FOR 
DIFFERENT TUPLES USING DALO AND EP-DALO FOR 

MEETING SCHEDULING DOMAIN 
 

Graph (n;D; 
t=k)  

DALO algorithm 
EP- 

DALO 
algorithm 

(10,0.2,k=1) 10.32 5.45 
(10,0.4,k=2) 18.65 9.78 
(10,0.6,t=1) 65.97 26.97 
(10,0.4,t=2) 163.56 49.97 
(50,0.2,k=3) 21.043 13.76 
(50,0.4,k=5) 61.076 26.45 
(50,0.6,t=3) 418.78 198.97 
(50,0.4,t=5) 398.78 165.57 
(100,0.2,k=10) 158.98 59.57 
(100,0.4,k=15) 204.65 69.897 
(100,0.6,t=4) 403.67 140.98 
(100,0.6,t=6) 794.98 328.67 

Average 
Discrepancy 

(0.59) 

 
 

TABLE IV. COMPUTATIONAL BURDEN FOR EACH AGENT 
FOR DIFFERENT t,k IN MEETING SCHEDULING DOMAIN 

 

 
 

B. Solution Quality (SQ) 
 

To compare the algorithms, the quality of the 
solution for DALO and EP-DALO are evaluated. 
Both algorithms start from a same random initial 
assignment. The stopping criterion is also defined in a 
same for both algorithms. The algorithm stops 
running whenever all groups do not tend to change 
their assignments because there is no new assignment 
to increase the utility of groups. We set parameter t to 
2, h to 3, and m to 5 respectively. Determination of 
the exact values of h and m is made just by 
experiment and we set the parameters to the values 
which have the more desirable results. More 
discussion related to determination of h and m can be 
found in [8]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In our first experiment we compare the solution 
quality of our EP-DALO algorithm and DALO. 
Obviously, algorithm that achieves a final solution of 
higher quality in a lower number of rounds is more 
desirable. Figures 9 and 10 show that the solution 
quality increases by algorithm in comparison with 
DALO. For instance in Figure 9 the final solution 
quality for graphs with D = 0.2 using DALO is 65, 
but using EPDALO the quality in the same graphs is 
82. Moreover, after group alteration through EP-
DALO, there will be a boost in the solution quality; 
these increases end in the algorithm convergence to a 
higher solution quality in lower number of rounds in 
comparison with DALO. 

 

 
Fig. 10. Solution quality: EP-DALO vs DALO for graphs with 

density 0.6. 
 
As another example, consider the diagrams in 

Figure 10, EP-DALO converges after 150 rounds and 
DALO converges after 195 rounds. The results also 
show that the EP-DALO algorithm is even more 
efficient on dense graphs. It is clear that the groups in 
dense graphs have more number of agents in 
comparison with sparse graphs. Accordingly the 
overlap among groups increases and there will be 
more number of agents which are common among 
groups. In this case, there will be more number of 
agents which do not allow a leader to set its 
assignment by committing to other groups. Overlay, 
the results in our experiment show that the quality of 
solution increases 43% and the number of round 
decreases 21%, on average. It can be concluded that 
using EPDALO algorithm, solutions with higher 
quality are achieved in a lower number of rounds.  

To further understand and compare the performance 
of EP-DALO and DALO, we provide an analysis on 
local group changes. In each group, the leader locks 
some of the variables and if all group members 
commit to the new assignment, it will be set. By 
setting the new assignment, the utility of group, which 
we call it gain, will change. The (Gain,#Locked 
Variables) pair is used as a metric to compare DCOP 
algorithms in [11]. It is a proper metric to compare 
the effect of different group formations in solving 
DCOPs. The more the number of locks, the more the 
number of conflicts. Hence, groups with lower 
number of locks and larger gain are more preferred.  

To show the performance of the algorithms, we 
compare the result for graphs with size 50 and density 
0.4. As it is declared in Figure 11 DALO never Fig. 9. Solution quality: EP-DALO vs DALO for graphs 

with density 0.2. 
 

 



achieves a gain larger than 500 and barely locks more 
than 20 variables. On the other hand, EP-DALO 
achieves gain 800 by locking more number of 
variables. For example as it is specified in the Figures 
11 and 12 by locking 20 variables DALO achieves 
gain 500 while EP-DALO can achieve gain 850. In 
Figure 11, the congestion is on the value 18 which 
indicates that most of groups locked 18 variables. On 
the contrary, as it is circled in Figure 12, the 
congestion is on the value 23. The difference in the 
number of locked variables is not very much, but the 
quality improvement is considerable. Hence, by slight 
increase in the number of variables better solutions 
are achieved. Our experimentations show hat EP-
DALO outperforms DALO both in term of solution 
quality and the number of rounds that this qualities 
achieved. 

 

 
 

Fig. 11. (Gain,#Locked Variables) for DALO. 
 

 
 

Fig. 12. (Gain,#Locked Variables) for EP-DALO. 
 
 

VIIII. CONCLUSION AND FUTURE WORK 
 

In this paper, we presented a new method for 
solving DCOPs called EP-DALO. In this algorithm, 
we use a sequential partial approach to select leaders 
to compute the new assignments that both prevents 
the activation of all leaders and decreases the 
communication cost. Moreover, to compute the new 
assignments, we use an evolutionary algorithm that 
decreases the computation in each group. The key 
features of this algorithm are that the computation and 
communication cost are very low in whole DCOP and 
the computation and communication burden of each 
agent decreases by a considerable amount. Our 
experiment show that using our new algorithm does 
not degrade the quality of the solution by decreasing 
the computation and communication cost. To be more 
accurate, our algorithm is more accurate on dense 

graphs. Given these features of our new algorithm, we 
believe it is a proper candidate for solving DCOP in 
large scale and real time domains, since the 
computation and communication cost is the main 
concern in these domains. 

To design an efficient algorithm, all parameters – 
computation and communication cost and the quality 
of the solution  should be considered altogether. 
Computing low quality solutions very quickly or 
computing high quality solutions very slowly is not 
acceptable in many domains. Therefore, there should 
be a balance between the time and the quality. The 
algorithm that tries to create the balance among these 
parameters is efficient and can be applied to different 
domains. Our algorithm creates the balance among 
the above mentioned parameters and creates the 
solution with acceptable quality at lower costs. 

We are planning to extend the algorithm by using 
dynamic group formation by which the quality of the 
solution can be increased and the complexity of the 
algorithm can be decreased. 
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