
A Scalable Algorithm to Solve Distributed
Constraint Optimization

Received: November 18, 2012- Accepted: January 26, 2014

Abstract- Recently, Distributed Constraint Optimization Problems (DCOP) have been drawing a growing body of
attention as an important research area in multi agent systems as a large body of real problems can be modeled by
them. The primary goal of this research is to design a distributed and effective algorithm to solve DCOP. There are
various criteria that measure the efficiency of DCOP algorithms, but the most efficient algorithm for DCOP is the one
by which the computation and communication cost is as low as possible and the quality of the solution is high. In this
paper, we focus on an approximate DCOP algorithm called DALO (Distributed Asynchronous Local Optimization).
Using the main idea of the DALO algorithm, we propose a new algorithm to solve DCOP, which exhibits two
important improvements over the DALO algorithm. First we use a sequential partial approach to select a coefficient
of leaders to compute the best assignment for agents by which the computation and communication cost decrease in
the whole DCOP. The second improvement is an evolutionary approach by which the computation and
communication burden for each agent decreases. We present some empirical evidences that show our algorithm
performs better than the DALO algorithm.

key words- distributed constraint optimization, multi agent system

I INTRODUCTION

In many practical problems such as resource
allocation, planning and scheduling wherein
coordinating all entities is not possible, the key goal is
to develop decentralized coordination techniques.
Multi-agent systems are a popular way to model the
complex interactions and coordination required to
solve distributed problems [1]. A multi-agent system
is a network of agents used to perform distributed
computation. Networks of cooperative agents are
heterogeneous, and not all agents have direct links to
one another. Additionally, information is distributed

throughout the network either due to privacy concerns
or the impracticality of centralizing. In this network,
each agent is an autonomous entity with local
information and has the ability to perform an action in
cooperative situations in which agents collaborate to
achieve a common goal Agents need to coordinate
their activities to accomplish their collective goals.
Distributed Constraint Optimization (DCOP) is a
common formalism for representing multi-agent
systems in which agents cooperate to optimize a
global objective [2], [3].

Mohsen Afsharchi
Department of Computer Engineering

University of Zanjan
Zanjan, Iran

afsharchim@znu.ac.ir

Maryam Rahmaninia
Department of Computer Engineering

 Ghasre-shirin Branch, IAU
Ghasre-shirin, Iran

 ma.rahmaninia@gmail.com

Elnaz Bigdeli
Department of Computer Science

IASBS
Zanjan, Iran

 e_bigdeli @iasbs.ac.ir

Technical Note

mailto:ma.rahmaninia@gmail.com

DCOP grew out of the field of Constraint
Optimization Problem (COP) [4], which was itself
built upon work from the field of Constraint
Satisfaction Problems (CSP) [5]. Distributed
Constraint Satisfaction Problems (DisCSP) were first
studied by Yokoo and have recently attracted a
growing body of interest [6]. In DisCSPs, constraints
simply specify that certain combinations of values are
legal or illegal. However, in the more expressive COP
and DCOP formalisms, constraints specify how
preferable different combinations of values are by
associating cost functions with the constraints [3].

Distributed Constraint Optimization (DCOP) has
been applied to different domains. DCOPs are able to
model the task of scheduling meetings in large
organizations, where privacy needs make centralized
constraint optimization difficult [7]. DCOPs are also
able to model the task of allocating sensor nodes to
targets in sensor networks, where the limited
communication and computation power of individual
sensor nodes makes centralized constraint
optimization difficult [9]. Finally, DCOPs are able to
model the task of coordinating teams of unmanned
vehicles in disaster response scenarios, where the
need for rapid local responses makes centralized
constraint optimization difficult [10].

There are many algorithms that can solve DCOPs.
The central focus of DCOP algorithms is to design an
algorithm which has low computational and
communicational cost and produces solutions with
high quality. It is obvious that to reach more accurate
solutions for a DCOP, more computations and
communications are required. Most algorithms try to
tradeoff among the cost of computation and
communication and the quality of solutions. The cost
of computation and communication is more crucial in
large-scale domains. Considering this point, we
propose an algorithm that can scale up in large scale
problems. The proposed algorithm is an extended
version of the DALO algorithm, which works
efficiently in large scale domains. DALO algorithm
decomposes a DCOP problem to sub-groups and
solves DCOP in each sub-group [11]. This algorithm
uses either a t-distance or k-size criterion to form
groups. A t-distance or k-size criterion creates large-
sized groups in dense graphs. On the other side in
each sub-group, a complete algorithm is used to
compute the best assignment. The computational
complexity of complete algorithms is exponential in
the number of variables, since distributed constraint
optimization is known to be NP-hard [9]. Therefore,
the computational cost is very high in groups that are
created with a t-distance or k-size criterion.
Consequently, it is hard for complete algorithms to
scale up, because the computation burden might
increase exponentially as the number of variables
increase [11]. The problem gets worse because in
DALO algorithm all agents form groups and try to
compute the best assignment in their groups. We
contribute two important algorithmic advances for the
DALO algorithm. The first is, instead of using a

complete DCOP solver in each group, we use an
evolutionary algorithm to find the solution in each
group. The evolutionary algorithm decreases the
computational cost by a considerable amount in each
group. The second is selecting some leaders to
compute the new assignment in each group instead of
all leaders. The selection of leaders should be done in
a way that the quality of solutions gained by their
computation is high. We propose a simple and
effective method by which the computation decreases
and the quality is acceptable.

The structure of the paper is as follows. In section
II, formal definitions of DCOP and t-distance optimal
and k-size optimal solutions are presented. In section
III, the DALO algorithm and its main issues are
described. The new algorithm is introduced in section
IV. An analysis of our new algorithm is presented in
V. Experimental results of our new algorithm and its
comparison with the DALO algorithm are depicted in
section VII. Finally, the conclusion and future works
are presented in section VIII.

II. RELATED WORKS

There are two main categories for DCOP
algorithms: complete and incomplete. Complete
algorithms always find a configuration of variables
that optimizes the global objective function. In
contrast, incomplete algorithms find semi-optimal
solutions. ADOPT (Asynchronous Distributed
OPTimization) is the first complete algorithm for
DCOP that allows asynchronous concurrent execution
and is guaranteed to terminate with the global optimal
solution [9]. There has been extensive research that
attempted to speed up complete algorithms. Ali et al.
introduce a framework of different preprocessing
techniques that are based on dynamic programming to
speed up ADOPT. Their approach can speed up
ADOPT by an order of magnitude [12]. Another
study done by Yeoh et al. introduces Branch-and-
Bound ADOPT (BnB-ADOPT), a memory-bounded
asynchronous DCOP algorithm which changes the
search strategy of ADOPT from best first search to
depth first branch and bound search. This algorithm is
up to one order of magnitude faster than ADOPT on a
variety of large DCOP problems [13].

The other complete algorithm for distributed
constraint optimization is DPOP (Dynamic
Programming Optimization). It works based on
dynamic programming. It uses a utility propagation
method that is inspired by the sum-product algorithm,
which is correct only for tree-shaped constraint
networks [3]. Some improvements have already been
discovered for the DPOP algorithms. For example,
MB-DPOP provides a memory-bounded algorithm
that trades off the linear message number of DPOP
with polynomial message size [14].

Since DCOP is NP-hard [9], as the scale of
application domain increases, complete algorithms
exhibit an exponentially increasing coordination
overhead. Thus, their use in practical applications,

such as those mentioned above, is severely limited.
Therefore, many researchers pay more attention to
incomplete algorithms that decreases the computation
and communication cost.

Comparing with complete algorithms, incomplete
algorithms find semi-optimal solutions and do not
guarantee the achievement of global optimal solution.
In incomplete algorithms, agents form small groups
and then try to optimize solutions within these groups.
These algorithms decrease the computation and
communication costs. Therefore, these algorithms can
be applied to large scale systems and are more robust
in dynamic environments. It should be noted that in
some domains, the best optimum solution is required
and complete algorithms should be used to reach the
best solution.

Incomplete algorithms can be categorized in two
groups. The first group of incomplete algorithms
provide guarantee on the quality of the solutions they
compute. The second group of incomplete algorithms
do not provide any guarantees on the quality of the
solutions. Guarantees on the quality is important in
some domains.

Incomplete algorithms such as MGM (Maximum
Gain Message) [6] and DSA (Distributed Stochastic
Algorithm) [15] are the examples of algorithms that
do not provide any guarantee on the quality of
solutions. These two algorithms use the maximum
gain approach to solve DCOP. In MGM, each agent
broadcasts a gain message to all its neighbors and an
agent is allowed to act if its gain message is larger
than all the gain messages it receives from all its
neighbors. For DSA, each agent generates a random
number from a uniform distribution on [0, 1] and acts
if the number is less than a threshold p.

Max-sum as an incomplete algorithm is a very
promising technique for DCOP because it provides
solutions close to optimality while requiring very
limited communication overhead and computation.
The max-sum algorithm belongs to the Generalized
Distributive Law (GDL) framework. While many
incomplete algorithms fail to provide any guarantees
on the solution quality in general settings, this
algorithm provides guarantees on the quality of
solution [16].

In the class of incomplete algorithms, there are
algorithms called k-optimal. k-optimal algorithms
guarantee solutions that cannot be improved when
any group of k or fewer agents change their decision.
Many incomplete algorithms, such as MGM [17] and
DSA [15] described above, yield 1-optimal solutions.
The other version of MGM1 is MGM2 [18], which
provides 2-optimal solutions.

The KOPT algorithm is the only incomplete
algorithm that works for arbitrary k [19] and provides
a guarantee on the quality of solutions. There is a
detailed investigation in the field of k-optimal
algorithms. Pearce and Tambe presented the first

known guarantees on solution quality for k-optimal
solutions [20]. They provided reward and structure-
independent guarantees on solution quality for any k-
optimal DCOP assignment. In addition, they
presented tighter guarantee for ring and star graphs in
their work. Two main properties of k-optimal
solutions are introduced in [21]. The first one is the
worst case guarantee on the quality of the k-optimal
solution in a DCOP. The second one is the worst-case
guarantee on the number of k-optimal solutions that
can exist in a DCOP. A close view to the k-optimal
solution set can be found in [21]. Here, by using
coding theory, they provide an upper bound for the k-
optimal solution set. Furthermore, Vinyals et al.
recently introduced the C optimality framework that
generalizes both k-optimality and t-optimality by
providing quality guarantees for local optima in
regions that can be defined by arbitrary criteria [25].

Another incomplete algorithm for DCOP is DALO,
which works based on t-distance optimality [11]. In
this algorithm, each agent forms a group with other
agents with a distance of t hops [11], [22]. This
algorithm provides a guarantee on the quality of the
solution based on the t-distance criterion.

 Recent works are extending the whole picture of
DCOP to asymmetric world. In asymmetric DCOPs
different agents may have different valuations for
constraints that they are involved in. This new
framework bridges the gap between multi-agent
problems which tend to have asymmetric structure
and the standard symmetric DCOP model. The
benefits of ADCOP model over previous attempts to
generalize the DCOP model are discussed in [29]. A
very comprehensive review of DCOP could be find in
[27].

Our proposed algorithm is an efficient incomplete
algorithm that provides a guarantee on the quality of
solutions and can be applied to large scale domains,
because it has low computation and communication
cost.

III. BACKGROUND

In this section, we will provide some basic
definitions about DCOP and t-distance optimality.

A. Distributed Constraint Optimization (DCOP)

A DCOP is defined by a set of variables
V={v1,…,vn}, a set of discrete finite domains for each
variable D={D1,…,Dn}, and a set of constraints
C={c1,…,cq} between the variables. Each variable is
controlled by a separate agent that can communicate
with other agents.

Assuming each agent controls a single variable, we
will use the terms agent and variable interchangeably.
The value generally represents an action that an agent
should perform as part of larger team. A joint
assignment A={a1,…,an} specifies a value for each
variable, in which ai is the value of agent i.

Constraints exist between subsets of these variables
that determine costs and rewards to the agent team
based on the combinations of values chosen by their
respective agents. Constraints convey how the values
taken on by different variables affect one another.
Variables vi and vj are considered neighbors if they
share a constraint, and only neighbors can directly
communicate with one another. In DCOP formalisms,
constraints specify how preferable the different
combinations of values are by associating cost
functions Fij associated with the constraints. This
paper only considers binary constraints, which means
that each constraint has two variables. A cost function
Fij:Di × Dj R takes the values of variables vj and vj
as an input and returns a value as a non-negative
number for a constraint.

The utility of agent i for assignment A is:

Ui (A) = � Fij �𝑎𝑎i ,𝑎𝑎 j �

vj

Where 𝑣𝑣𝑖𝑖 ← 𝑎𝑎𝑖𝑖 , 𝑣𝑣𝑗𝑗 ← 𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗 ∈ 𝐴𝐴 (1)

It means that the utility of the ith agent is the sum of
the cost functions of all constraints to which an agent
belongs.

The goal is to choose values for variables such that
a given objective function is maximized. The
objective function is the sum over a set of cost
functions, or valued constraints. Thus, the objective is
to maximize:

R (A) = � Fij �ai, a j �

(vi ,vj)∈V

Where 𝑣𝑣𝑖𝑖 ← 𝑎𝑎𝑖𝑖 , 𝑣𝑣𝑖𝑖 ← 𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗 ∈ 𝐴𝐴 (2)

R(A) is the solution quality for the joint assignment
A [9], [23].

Constraint reasoning problems are frequently
represented diagrammatically, with the variables
represented by nodes and the constraints represented
as links between nodes in the graph, which is called
the constraint graph. The optimal assignment for this
DCOP with 6 variables and 7 constraints and an
identical cost function is A = (1,1,1,1,1,1) (see Figure
1).

Fig. 1. The constraint graph of an example DCOP with six binary
variables. Each constraint has the same cost function.

B. t-distance Optimality

Definition 1: For two different assignments A and
𝐴𝐴′ , D(A, 𝐴𝐴′) is:

D(A, 𝐴𝐴′) ={𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 | 𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑖𝑖′ , 𝑣𝑣𝑖𝑖 ← 𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴, 𝑎𝑎𝑖𝑖′ ∈
𝐴𝐴′} (3)

In other words, D is a deviating group between two
assignments A and 𝐴𝐴′ .

For example, in Figure 2, for the given assignment
(1,1,1,0,0) and (0,0,0,0,0), the deviating group is
D((1,1,1,0,0) , (0,0,0,0,0)) = {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 }. Thus, the
distance between the two assignments is the
cardinality of the deviating group which is 3.

For a pair of variables vi and vj , let 𝑇𝑇 (vi , vj) be the
shortest distance between them in the constraint
graph. Then 𝛷𝛷t (vi) = { vi|T (vi , vj) ≤ t, vi, vj ∈ V}
denotes a set of variables that can be reached from vi
within t hops.

Definition 2: A DCOP assignment A is t-distance
optimal if R(A)≥ R(𝐴𝐴′) for all 𝐴𝐴′ , where D(A, 𝐴𝐴′)
⊆ 𝛷𝛷t (vi) for some vi ∈ V (see [11], [22]).

Fig. 2. An example DCOP with five binary variables. Each
constraint has the same cost function.

Example: Consider the graph in Figure 2. Given t = 1,
1-distance groups for all variables will be: 𝛷𝛷1(v1)
={v1,v2,v3}, 𝛷𝛷1(v2) = {v1, v2, v4, v5}, 𝛷𝛷1(v3) = {v1, v3, v4},
𝛷𝛷1 (v4) = {v2 , v3, v4, v5} and 𝛷𝛷1(v5) = {v2, v4, v5}. In this
example, A = (0, 0, 0, 0, 0) with R(A) = 6 is 0-
distance optimal. Assignment A is 0-distance optimal,
because if every agent changes its value, then the
solution quality will decrease. Assignment A is not 1-
distance optimal. Moreover, this assignment is not 2-
distance optimal, because there is an assignment 𝐴𝐴′ ′ =
(1, 1, 1, 1, 1) with R(𝐴𝐴′ ′) = 12 for which its utility is
more than A.

C. k-Optimality

A DCOP assignment A is k-optimal if R(A ≥R(𝐴𝐴′)

for all 𝐴𝐴′ for which | D(A, 𝐴𝐴′) |≤ k, Where | D |
denotes the cardinality of set D (see [23]).
Example: Consider the graph in Figure 3 in which V
= {v1, v2, v3, v4} are variables with binary domain. In
this example, constraints are c1 = {v1, v2}, c2 = {v1, v3},
c3 = {v2, v4}, c4 = {v3, v4}. A1 = {0, 0, 0, 0} is a 1-optimal
assignment with R(A1) = 4. This assignment is 1-
optimal because no unitary change in assignment A1

improves the reward. But it is not a 2-optimal

assignment, because if one pair of agents changes
their values simultaneously to 1, the solution quality
increases. Assignment A2 = {1, 1, 1, 1} with R(A2) = 8
is a 4-optimal assignment and is also the best
assignment.

Fig. 3. An example DCOP with four binary variables. Each

constraint has the same cost function.

IV. DALO ALGORITHM AND ISSUES

DALO (Distributed Asynchronous Local
Optimization) is an algorithm which can compute
either k-size or t-distance optimal solutions for any
value of k or t [22].

The DALO algorithm has three phases. In phase
one, agents send initialization messages to nearby
agents, to find all of the k or t groups in the constraint
graph and assign each group a unique leader. In phase
two, based on the information gathered in the
previous phase, all leaders compute a new optimal
assignment using a centralized variable elimination
algorithm in parallel. In phase three, if the new
assignment improves the solution quality, the group
leader attempts to set the new assignment. When all
the leaders try to set their assignments, there will be
conflicts among overlapping groups, which are
resolved by an asynchronous locking and
commitment protocol.

DALO Issues
Although DALO is an effective algorithm for solving
DCOP problems, it suffers from some drawbacks.
Using k or t as a criterion to create groups may

produce groups with a large number of nodes. As it is
explained for the DALO algorithm in phase two, a
complete algorithm is used to solve DCOP. All group
leaders compute new optimal assignments for their
groups in parallel. A leader node uses a centralized
variable elimination algorithm to solve the sub
problem for the local group. The computational
complexity of a complete DCOP solver is exponential
in its number of variables. By increasing k and t, the
number of agents in a group increases, therefore,
using a complete DCOP solver will not be tolerated
from a time and space point of view.
The second problem is that all leaders start to

calculate the best possible assignment for their group
members, but at the end of each round, to avoid
conflicts among leader assignments, some of these
leaders are chosen and their assignments are set. It
means that each agent belongs to different groups,
and each agent should finally choose one of the
leaders’ assignments. Based on the DALO algorithm,
if all agents commit to the new assignment, then the

leader set the assignment. As it is clear, finding the
best assignment in each group needs a large number
of messages to be sent and received, which increases
the complexity of the algorithm. It is more efficient
not to compute new assignments for leaders that do
not have set assignments, as this will reduce the
computational load.
In this paper, we try to solve these problems. To solve
the first problem, we use a genetic approach instead
of using a centralized variable elimination algorithm.
This approach decreases the computation time
substantially. To overcome the second problem, we
utilize a partial approach in which only a group of
leaders are selected to compute the best assignment
instead of all of them. The partial method is an
effective method to reduce the communication cost
while keeping the solution quality almost the same.
Using the partial approach, the number of messages
passed among agents decreases by dismissing the
leaders whose assignments will be ignored at the end
of each round. Consequently, there will be a
substantial decrease in computational and
communication time in each round.

V. EP-DALO ALGORITHM
In this section, we present our new algorithm called

EPDALO (Evolutionary Partial DALO). The EP-
DALO algorithm is a scalable algorithm to solve
distributed constraint optimization problems.
This algorithm has three phases.
• Initialization: In phase one, each agent sends

information to the agents of its group that is
constructed with the given t or k.

• Computing the Best Assignment: Computing the
new assignment has two steps:
– Leader Selection: Some leaders are selected to

compute a new assignment for their groups
based on the sequential partial approach.

– Computing the best assignment using the
genetic algorithm: Using the genetic approach,
every agent calculates the best assignment to
its group members.

• Set the assignment: In phase three, the conflicts
among overlapping groups are resolved, and the
new assignment is set.

Phase one is executed once whereas the other
phases are repeated until the new assignments show
no further improvement.

A. Initialization

 In this phase, the leader, which is given t or k
starts to construct its group. At first, every agent
sends a message containing all its constraints to all
agents in its group. Then, it chooses an initial value
from its domain and broadcasts it to group members.
Consider the constraint graph in Figure 1: the groups
of agent 4, which are constructed using t = 2 and k =
2, are shown by solid and dash lines, consecutively.

B. Computing the Best Assignment

In this phase, the leader of each group calculates the
best possible assignment by which the quality is
maximized. There are two issues that should be
mentioned in this phase.

The first issue is about leaders that have permission
to compute new assignments in each round. Based on
our discussion in section III, in phase 2 of the DALO
algorithm, all leaders calculate a new assignment for
their group members whereas some of these
assignments will be ignored to avoid conflicts among
leader assignments. Hence, it is better to have some
leaders not compute new assignments. To this end,
the permission to calculate a new assignment is
granted to some leaders in each round. The leaders
with permission to compute the new assignments are
called active leaders. We use the partial sequential
approach to select leaders to be activated.

The second issue is about the computation that each
leader performs to find the best assignment. A leader
node uses a centralized variable elimination algorithm
to solve the sub problem for the local group with
exponential computational cost. A method with lower
computational cost should be used to reduce the
computational load. A genetic algorithm is used to
find the best solution in each sub-graph.

Therefore, for computing the best assignment at
first by using the partial sequential approach, some
leaders are selected, and then the selected leaders
calculate the best assignment through the genetic
approach.

1) Selecting Leaders by Partial Sequential

Approach: As it is described in the DALO algorithm,
there are n different groups for a graph with n agents.
Consequently, here are n leaders. We define the index
set L = {1, 2,…, n}. For a given h, the index set L is
divided into h subsets S ={S1, S2, … , Sh}. Each subset
includes the agent’s ID which should be activated. In
each round, one of the Si is selected according to a
pre-defined approach and the leaders in Si run the
genetic algorithm in a synchronous manner. The main
problem is assigning agents to subsets { S1,… , Sh }.
The best approach to this end is the one that assigns
leaders to subsets that by activation of their leaders
solution quality increases in each round. This
approach is the most desirable one but in return
increases the complexity of algorithm. Leaders’
selection can be performed by a sequential approach.
This simple method decreases the communication
time substantially.

In the sequential approach, S1 is selected in the first
round, S2 in the second round and Sh in the hth round,
and in round h + 1, S1 is selected again. Consequently,
after h rounds, all subsets are selected exactly once. In
this approach, at a given round r, one of the subsets
S1, S2, … , Sh is chosen in a sequential fashion. After
h rounds each subset has been selected only once.

In this method, we assume that in each round, each
leader in a network synchronously checks if:

l % h = r % h (4)

Where l is the leader’s ID and r is the number of
round. Then, this leader computes a new assignment.

As an example, consider the graph in Figure 1. For

h=3, set S will be:

S = {{Ag1,Ag4}, {fAg2,Ag5},{Ag3,Ag6}}

Based on the above mentioned approach, in round
1, {Ag1,Ag4} are selected, in round 2, {Ag2,Ag5} are
selected, and in round 3, { Ag3,Ag6} are selected, and
the selection process continues in the same fashion. It
is obvious that in the end of the hth round, all subsets
are selected exactly once. Obviously, different
methods can be used in the sequential approach.

2) Calculating the Best Assignment : The Genetic
Genetic Algorithms (GA) are adaptive methods and

have Approach :In the second phase of our algorithm,
each leader starts to find the best assignment for its
group. As previously mentioned, a leader node uses a
centralized variable elimination algorithm to solve the
sub-problem for the local group. The computational
time of a complete DCOP solver is exponential. A
DCOP is an optimization problem, and nowadays,
evolutionary algorithms, particularly Genetic
Algorithms (GAs), are considered one of the best
known algorithms for solving optimization problems.
Instead of using a centralized variable elimination
algorithm, we use genetic algorithms to find the best
assignment centrally

Genetic Algorithms (GA) are adaptive methods and
have been applied to optimization problems in many
fields [24]. For the genetic approach, a leader starts
out with an initial population of possible solutions
called individuals. Each individual is represented as a
chromosome using a form of encoding. These
chromosomes are evaluated for their fitness. The
fittest solutions are those that are more appropriate for
the problem. Based on their fitness, certain
chromosomes in the population are selected for
reproduction. These selected individuals are parents
that are manipulated by crossover and mutation to
create offspring. The repeated application of these
genetic operators on the fittest chromosomes results
in an increase in the average fitness of the population
over time, and thus result in the identification of
improved solutions for the problem under
investigation.

Before we apply a genetic algorithm to a distributed
constraint optimization problem, we will show how
chromosomes are represented and how the fitness of
chromosomes are evaluated.

In this paper, each assignment for a group is
considered as a chromosome. For group 1 in Figure 2,
A= (0, 1, 0) is a possible assignment and also a
chromosome in the genetic approach in which ai

indicates the value for the agent i. As we described in
section II, the value of each agent is chosen from a
binary domain. Therefore, each chromosome is a
string of binary values indicating an assignment for a
group. The fitness of a chromosome is evaluated by a
fitness function. The fitness function that is used in
this paper to evaluate the fitness of a chromosome is
the solution quality, which is defined in section II.
Solutions with high quality are considered the fittest
ones. Consider the graph in Figure 2: between the two
assignments A = (0, 0, 0, 0, 0) with R(A) = 6 and 𝐴𝐴′=

(1, 1, 1, 1, 1) with R(𝐴𝐴′) = 12, 𝐴𝐴′ is the fittest
solution.

Finding the best assignment using the genetic
approach has four phases:

Initialization: In this phase, an initial population is
generated. This population is a set of chromosomes. A
chromosome is a possible assignment for each group.
The chromosomes are equal in size with the group
and are a string of binary values. Element i in the
string indicates the value for Agenti. Consider, each
agent chooses a value from a binary domain.
Therefore, for a group with m agents, there will be 2𝑚𝑚

assignments. Generally, the population is generated
randomly, and is selected from all possible solutions
for a problem. The size of the population is different
for each group and depends on the size of the group.
It is also considered constant during the execution of
the algorithm.

• Selection: To generate the next population, a set

of solutions is selected from the existing
population. Generally, the main criterion for
selection is fitness, and individuals that are high fit
will be selected to generate the next generation.
As mentioned, the fitness of each individual is
evaluated by the fitness function, which is the
solution quality in this algorithm. According to
this criterion, a proportion of the current
population with high solution quality will be
selected to generate the next population. However,
this paper uses the stochastic method. This method
presents opportunities for less fit solutions. Two
individuals are chosen to act as parents. One of the
parents is chosen amongst the best solutions in the
population, while the other is randomly chosen
from the whole current population.

• Reproduction: In this phase, the next population
is generated. Two chromosomes are selected to
generate new chromosomes. Crossover and
mutation are two basic operators of GA that can
generate new chromosomes for the next
population. The performance of GA depends on
these operators. There are many different types of
crossover and mutation. Type and implementation
of operators depend on the encoding and also on
the problem.

– Crossover: We use the single point crossover in
our implementation. In single point crossover,
one crossover point is selected, the binary string
from the beginning of a chromosome to the
crossover point is copied from one parent, and
the rest is copied from the second parent [26].
Consider the graph in Figure 2. For the group of
Agent1, two assignments A1 = (0, 1, 0), A2 = (0,
0, 1) are the two parent chromosomes. Using a
single point crossover and considering i = 2 as a
crossover point, the offspring will be A3 = (0, 1,
1).

– Mutation: A mutation operator simply inverts

the value of the chosen chromosome. The

mutation operator is used as a slight
modification to the offspring. We set mutation
probability into 0.007 to mutate values for an
individual.

• Chromosome Evaluation: In this phase, newly
generated offspring are added to the population
and then the worst individuals are removed from
the population. Depending on whether they are
better than the worst individuals in the population,
the new offspring may or may not survive to join
the new population. Mainly, some solutions with
lower utility are selected since using these
solutions to generate offspring sometimes leads to
high fit chromosomes.

Population generation is repeated until the
algorithm converges to the optimal solution.

A. Set the assignment
Having found the best assignment for a group, the

leader attempts to implement the new assignment by
sending out requests. This can cause conflicts among
overlapping groups, which is resolved by an
asynchronous locking and commitment protocol in
our approach [11].

VI. PARAMETER ANALYSIS

In the partial sequential approach, based on the

description in IV-B1, a subset that consists of leaders’
ID is selected in each round. The number of subsets h
is an important parameter in this algorithm and
influences its computational complexity, solution
quality and number of rounds.
In set S = {S1, … , Sh}, increasing h means

increasing the cardinality of S. In a graph with n
agents, there are�𝑛𝑛

ℎ
� leaders in each subset. Hence, by

increasing h, the number of leaders in each subset will
be decreased. As it is described, in each round, a
subset is selected and if the number of leaders in a
subset decreases, the number of leaders that are
activated in each round would be few. Therefore, the
number of leaders that compute new assignments are
few and as a result, the communicational cost
decreases. On the other hand, increasing h decreases
the solution quality. Increasing h decreases both the
number of activated leaders in each round. Hence, the
number of new assignments that are computed will be
decreased, and to reach the specified quality, more
number of rounds will be needed.
According to the above description, parameter h

should be chosen in a way that with few numbers of
messages and rounds, the algorithm converges to a
solution with high quality. If we consider m as the
maximum number of messages passed in each group,
the total number of messages that are passed in each
round of the DALO algorithm for the whole graph
would be m × n. Consequently, the total number of
messages after r rounds would be:

MDALO = n × m × r (5)

In the EP-DALO algorithm, this amount would be:
MEP-DALO = 𝑛𝑛

ℎ
 × m × r' (6)

Where M is the total number of messages.
We introduce parameter 𝛽𝛽 to compare

communicational cost of DALO and EP-DALO with
regard to parameter h.

𝛽𝛽 = MEP−DALO

MDALO
 (7)

Based on our experiment, depending on the structure
of the graph, the number of rounds in DALO and EP-
DALO are not much different. So, we ignore r and 𝑟𝑟′
with a good approximation and consider 𝑟𝑟

𝑟𝑟′
 ≈ 1 , by

sequential approach, the number of messages passed
among agents in each round decreases by 1

ℎ
 .

An example is given to show how the best value for
h can be chosen. For a graph with n = 22, different
values for parameter h are chosen to reach a solution
with the highest possible quality and a low
computational complexity. Figure 4 depicts 𝛽𝛽 vs. h. It
is verified that h should be balanced according to the
number of messages, the solution quality and the
number of rounds. As it is clear, up to h=10 in the
new algorithm the communicational complexity is
decreased, whereas the solution quality is almost the
same as the DALO algorithm. For h > 10, number of
rounds should be increased to reach the quality of the
DALO solution.

Fig. 4. The best possible value for h is the minimum of the
diagram.

VII. EVALUATION METRICS
Different metrics are used to evaluate DCOP
algorithms. To evaluate the proposed algorithm,
we use four different metrics. The first three
metrics are introduced in [22] and [28] and the
forth one is used for evaluation in [19] and [23].
These metrics are:
• Number of Rounds (NR): The dominant

metric for the evaluation of DCOP algorithms is the
number of synchronous rounds [30]. A round is
defined as one unit of an algorithm progress in
which all agents, in parallel, process their incoming
messages, perform any required computation, and
send their outgoing messages.
• Communication Load (CL): In each round,

every agent communicates with others due to two
reasons. First, to compute the best assignment, each
agent needs the constraint of others, therefore,
agents send messages containing constraints to
other agents. Sending constraints is done only one
time in the beginning of the algorithm. Since this
kind of communication is not repeated during

algorithm execution, we do not consider the time
required for this communication in computing the
computational load. The second reason is that, at
the beginning of each round, each agent sends its
value to the members of the groups to which it
belongs. Therefore, to solve DCOP, each agent
needs to send and receive lots of messages.
Algorithms with a low number of messages are
considered more applicable.
In our experiments we use two metrics,
communication load and communication burden.
The total number of messages passed in each round
in the whole DCOP is the communication load in
the DCOP algorithm and the communication
burden for each agent is the number of messages
sent by each agent after R rounds. e the
computational cost in a round, we
• Computational Cost (CC): In order to measure

use concurrent constraint checks. A constraint
check is the act of evaluating a constraint in the
problem by comparing the value of one variable
to another variable in the problem. Let cc(vi, r)
be the number of constraint checks performed by
agent vi in round r. Then, the computation time
of round r is defined as:

Computation time in round r = 𝑐𝑐𝑐𝑐 (𝑣𝑣𝑖𝑖 , 𝑟𝑟) × 𝑡𝑡𝑣𝑣𝑖𝑖∈𝑉𝑉
𝑚𝑚𝑎𝑎𝑚𝑚 (8)

Where t is the time required for one constraint check.
The maximum overall agents is used because the
agents are conceptually executing in parallel. The
length of a round is determined by how long the
longest running takes to complete.
The other measure that we use is the total number of
constraint checks performed by agent vi in R rounds.

𝑐𝑐𝑐𝑐(𝑣𝑣𝑖𝑖) = �𝑐𝑐𝑐𝑐 (𝑣𝑣𝑖𝑖, 𝑟𝑟) × 𝑡𝑡
𝑟𝑟=𝑅𝑅

𝑟𝑟=1

 (9)

Indeed, this metric shows the computational burden
that each agent has to solve DCOP.
• Solution Quality (SQ): The other metric
that we use in this paper to compare the algorithms
is the quality of solution, as introduced in section II.
• (Gain,#Locked Variables): The tuple
(Gain,#Locked Variables) analyzes the
performance of the algorithm on local groups. The
gain is the quality of group and the #Locked
Variables is the number of variables that are

locked to set the new assignment.
All these metrics are utilized to compare DCOP
algorithms. The main contribution of this paper is to
reduce the algorithms’ communication load and
computational cost. Since the computation and
communication cost are not same in the compared
algorithms, the number of rounds is considered
identical for both algorithms to compare the
algorithms in the same condition. The fourth metric is
considered to prove by decreasing CL and CC, the
quality of solution is not decreased.

VIII. EXPERIMENTAL RESULT

We considered two different domains for our
experiments. The first is the standard graph-coloring

scenario and the second is the domain of the meeting
scheduling problem.

In distributed meeting scheduling problem, groups
of researchers work in different locations and
therefore need to meet to cooperate on a joint project.
These researchers have various preferences over the
time and place of the meeting. Considering
researchers are in different locations, there are costs
associated with traveling to meetings. The problem is
to maximize the global sum of each researcher’s
satisfaction with the schedule, while ensuring that the
travel costs accrued by researchers do not exceed the
local travel budget for their research group.

TABLE I. COMMUNICATIONAL BURDEN FOR EACH

AGENT FOR DIFFERENT k,t.

Graph (n;D; t=k) DALO
algorithm

EP-DALO
algorithm

(10,0.2,k=2) 88.2 49.3
(10,0.4,k=1) 133 72.2
(10,0.6,k=2) 113.4 58.8
(50,0.2,k=3) 491.62 162.62
(50,0.4,k=5) 1275 427
(50,0.6,k=5) 1984 636
(100,0.2,t=6) 1261 300
(100,0.4,t=4) 423 106
(100,0.6,t=6) 847 186

Average iscrepancy (0.69)

A graph coloring problem, consists of a graph and a
set of colors, and its goal is to assign each vertex a
color such that the number of adjacent vertices with
the same color is minimized. As a DCOP, there is one
agent per vertex that is assigned to decide the
associated color.

We performed experiments on different graphs with
different structures. Structures of graphs are chosen
arbitrary and no special structure is used to prove the
efficiency of the proposed algorithm for any structure.
Our experiments use different graphs with sizes of n
= 10, 50, 100. The density of graphs is considered D
= {0.2, 0.4, 0.6} and parameters k and t for creating

groups are considered t = 1, 2, 3, 4, 5, 6 and k = 1, 2,
3, 5, 10, 15. Each arbitrary graph used in the
experiment is shown by a tuple (n,D, t/k). Therefore,
the tuple (50, 0:4, 2) is an arbitrary graph with a size
of 30 and a density of 0:4 for which groups are
created using t = 2 or k = 2. For each tuple (n ,D, t/k),
we create 15 different structures with size of n,
density of D, and parameter t/k. The results that are
shown for each tuple are the average of the results for
15 different structures. We use the same initial
assignment for both algorithms. The stopping
criterion used to terminate the running of the
algorithms is the number of rounds.

As stated before, the main goal of this paper is to
show sthat our algorithm decreases both
Computational Cost and Communication Load. To
make a fair comparison, we should prove that the
other parameters do not change under our new
approach. The main concern is the solution’s quality.
It needs to be proved that by decreasing computation
and communication, the quality of the solution will
not change too much. It will be shown in the
following section that the solution quality dose not
change very much in EP-DALO in comparison with
DALO. As the experimental results show, EP-DALO
decreases the computational cost and communication
load and it can be concluded that our proposed
algorithm is more efficient than the DALO algorithm.

The results shown in the following are mainly the
results of the graph coloring problem. The results of
the meeting scheduling problem are depicted in
Tables III and IV.
A. Efficiency

We present the empirical results from our
experiments which used two different incomplete
algorithms for DCOP, DALO and EP-DALO. We
illustrate that EP-DALO outperforms the DALO
algorithm in which groups are created based on
parameters t and k. In addition, by comparing
EPDALO with DALO, we show that the speed-up

Fig. 5. Average number of messages passed per cycle required to find the

optimal solution for graphs with size 50 and different k and t.

Fig. 6. Average number of messages passed per cycle required to find the

optimal solution for graphs with size 100 and different k and t.

comes from two sources: a) selecting some leaders to
compute the best assignments instead of all them and
b) using an evolutionary method that computes the
new assignment in a shorter time.
1) Communicational Load (CL): Figures 5 and 6
show the average total number of messages sent by all
agents per cycle of execution with DALO and EP-
DALO on the graph coloring problem. As the number
of agents is increased so is the number of messages
sent per cycle. Diagrams show the results for
constraint graphs with size n = 50, 100 and various t
and ks.

Let’s consider graphs with size 50, density 0.4 and
k = 5: the number of messages is 436 for EP-DALO,
and DALO have 1372 messages, which show that EP-
DALO decreases the number of messages sent per
cycle by 68% (See Figure 7). In addition, EP-DALO
algorithm is more efficient for larger t and k in all
above mentioned graph sizes. The justification is
straightforward. Larger t and k means each group has
a larger number of agents which leads to a larger
number of constraints in each group and more
communication to find the best assignment. For
example, in Figure 6, for graphs with tuple
(100,0.6,t=6), the number of messages is 239 by the
EP-DALO algorithm and is 1239 by the DALO
algorithm. The analysis is the same for various
densities in all graphs. By increasing density both the
number of constraints in each group and the
communicational load increase.

Figure 6 shows how DALO and EP-DALO scale up
with an increasing number of agents.

TABLE II. COMPUTATIONAL BURDEN FOR EACH AGENT FOR

DIFFERENT t,k.

Graph (n;D; t=k)
EP-

DALO
algorithm

DALO
algorithm

(10,0.2,k=2) 7.56 2.88
(10,0.4,k=1) 9.12 4.37
(10,0.6,k=1) 11.4 4.18
(10,0.6,k=2) 6.44 2.05
(50,0.2,k=3) 4.60 0.72
(50,0.4,k=3) 5.71 1.08
(50,0.6,k=3) 4.95 0.93
(50,0.6,k=5) 8.92 1.29
(100,0.2,t=4) 10.101 2.002
(100,0.2,t=6) 22.11 3.54
(100,0.6,t=4) 34.125 1.18
(100,0.6,t=6) 34.05 4.46

Average Discrepancy (0.81)

The results in Figures 5-6 show that EP-DALO

significantly outperforms both DAL-t and DALO-k
on problems with densities 0.4 and 0.6. The decrease
by EP-DALO over DALO is 72% on average.

The result for communicational burden is shown in
Table I. The computational burden for each agent
decreases by 69% in the EP-DALO algorithm.

2) Computational Cost (CC): The EP-DALO
algorithm decreases both measures, which are the
required time for computation in each round and the
time of computation during algorithm execution for

each agent. These parameters are measured by
elapsed CPU time in each round and after r rounds.

The results for graphs with n = 50, 100 are depicted
in Figures 7 and 8. The results in these figures depict
the average computational load for R rounds. For
example, tuple (100, 0.4, k = 10) has an elapsed CPU
time of 7.2 seconds for DALO whereas this parameter
for the EP-DALO algorithm is only 4:8 seconds. As
the results show, EP-DALO is more efficient by
increasing k and t and in dense graphs. The reason is
the same as the above mentioned reason in
communicational load. The larger number of agents in
groups means the larger communication load and
computation cost.

As the size of active agents in a group increases, the
elapsed CPU time of the DALO algorithm increases
exponentially, but with the EP-DALO algorithm, the
time increases polynomially. The difference between
the result of running two algorithms for t = 3 and t =
5 clarifies the efficiency of the algorithm. Consider
the tuple (50, 0.2, t = 3, 5) in which the size of the
graphs is 50, the density is 0.2, and the distance of 3,
5 is used to create groups. In the graphs with t = 5, the
size of groups is more than graphs with t = 3, so
computing all possible assignments and finding the
best assignment will be complicated. The EP-DALO
algorithm will decrease the computational cost by
53% for t = 3 but by 67% for t =5.

The other important point which is clear in the
results is that in dense graphs, the proposed algorithm
is more efficient. As it is shown in Figure 8, for
graphs with size n = 100 and t = 6 and density D =
0.6, computational cost is decreased by 81% and for
the same graphs with density D = 0.2, it is decreased
by 64%.

The computation burden for each agent is an
important factor, which is decreased by a considerable
amount by our proposed algorithm.

Table II depicts the computation time of each agent
after r rounds. The result for each tuple is the average
of computation time of agents in graphs with size n.
In the graphs with the tuple (100, 0.2, t = 4), the time
spent by an agent for computation after 91 rounds is
10.101 in the DALO algorithm and 2.002 in the EP-
DALO algorithm. It is obvious that using EP-DALO
decreases the computational burden in considerable
amount in each round and after R rounds. According
to the results, the computational burden for each agent
decreases by 81% in the EP-DALO algorithm in
comparison with the DALO algorithm.

TABLE III. RESULTS FOR COMPUTATION TIME FOR
DIFFERENT TUPLES USING DALO AND EP-DALO FOR

MEETING SCHEDULING DOMAIN

Graph (n;D;
t=k)

DALO algorithm
EP-

DALO
algorithm

(10,0.2,k=1) 10.32 5.45
(10,0.4,k=2) 18.65 9.78
(10,0.6,t=1) 65.97 26.97
(10,0.4,t=2) 163.56 49.97
(50,0.2,k=3) 21.043 13.76
(50,0.4,k=5) 61.076 26.45
(50,0.6,t=3) 418.78 198.97
(50,0.4,t=5) 398.78 165.57
(100,0.2,k=10) 158.98 59.57
(100,0.4,k=15) 204.65 69.897
(100,0.6,t=4) 403.67 140.98
(100,0.6,t=6) 794.98 328.67

Average
Discrepancy

(0.59)

TABLE IV. COMPUTATIONAL BURDEN FOR EACH AGENT
FOR DIFFERENT t,k IN MEETING SCHEDULING DOMAIN

B. Solution Quality (SQ)

To compare the algorithms, the quality of the
solution for DALO and EP-DALO are evaluated.
Both algorithms start from a same random initial
assignment. The stopping criterion is also defined in a
same for both algorithms. The algorithm stops
running whenever all groups do not tend to change
their assignments because there is no new assignment
to increase the utility of groups. We set parameter t to
2, h to 3, and m to 5 respectively. Determination of
the exact values of h and m is made just by
experiment and we set the parameters to the values
which have the more desirable results. More
discussion related to determination of h and m can be
found in [8].

In our first experiment we compare the solution
quality of our EP-DALO algorithm and DALO.
Obviously, algorithm that achieves a final solution of
higher quality in a lower number of rounds is more
desirable. Figures 9 and 10 show that the solution
quality increases by algorithm in comparison with
DALO. For instance in Figure 9 the final solution
quality for graphs with D = 0.2 using DALO is 65,
but using EPDALO the quality in the same graphs is
82. Moreover, after group alteration through EP-
DALO, there will be a boost in the solution quality;
these increases end in the algorithm convergence to a
higher solution quality in lower number of rounds in
comparison with DALO.

Fig. 10. Solution quality: EP-DALO vs DALO for graphs with

density 0.6.

As another example, consider the diagrams in

Figure 10, EP-DALO converges after 150 rounds and
DALO converges after 195 rounds. The results also
show that the EP-DALO algorithm is even more
efficient on dense graphs. It is clear that the groups in
dense graphs have more number of agents in
comparison with sparse graphs. Accordingly the
overlap among groups increases and there will be
more number of agents which are common among
groups. In this case, there will be more number of
agents which do not allow a leader to set its
assignment by committing to other groups. Overlay,
the results in our experiment show that the quality of
solution increases 43% and the number of round
decreases 21%, on average. It can be concluded that
using EPDALO algorithm, solutions with higher
quality are achieved in a lower number of rounds.

To further understand and compare the performance
of EP-DALO and DALO, we provide an analysis on
local group changes. In each group, the leader locks
some of the variables and if all group members
commit to the new assignment, it will be set. By
setting the new assignment, the utility of group, which
we call it gain, will change. The (Gain,#Locked
Variables) pair is used as a metric to compare DCOP
algorithms in [11]. It is a proper metric to compare
the effect of different group formations in solving
DCOPs. The more the number of locks, the more the
number of conflicts. Hence, groups with lower
number of locks and larger gain are more preferred.

To show the performance of the algorithms, we
compare the result for graphs with size 50 and density
0.4. As it is declared in Figure 11 DALO never Fig. 9. Solution quality: EP-DALO vs DALO for graphs

with density 0.2.

achieves a gain larger than 500 and barely locks more
than 20 variables. On the other hand, EP-DALO
achieves gain 800 by locking more number of
variables. For example as it is specified in the Figures
11 and 12 by locking 20 variables DALO achieves
gain 500 while EP-DALO can achieve gain 850. In
Figure 11, the congestion is on the value 18 which
indicates that most of groups locked 18 variables. On
the contrary, as it is circled in Figure 12, the
congestion is on the value 23. The difference in the
number of locked variables is not very much, but the
quality improvement is considerable. Hence, by slight
increase in the number of variables better solutions
are achieved. Our experimentations show hat EP-
DALO outperforms DALO both in term of solution
quality and the number of rounds that this qualities
achieved.

Fig. 11. (Gain,#Locked Variables) for DALO.

Fig. 12. (Gain,#Locked Variables) for EP-DALO.

VIIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new method for
solving DCOPs called EP-DALO. In this algorithm,
we use a sequential partial approach to select leaders
to compute the new assignments that both prevents
the activation of all leaders and decreases the
communication cost. Moreover, to compute the new
assignments, we use an evolutionary algorithm that
decreases the computation in each group. The key
features of this algorithm are that the computation and
communication cost are very low in whole DCOP and
the computation and communication burden of each
agent decreases by a considerable amount. Our
experiment show that using our new algorithm does
not degrade the quality of the solution by decreasing
the computation and communication cost. To be more
accurate, our algorithm is more accurate on dense

graphs. Given these features of our new algorithm, we
believe it is a proper candidate for solving DCOP in
large scale and real time domains, since the
computation and communication cost is the main
concern in these domains.

To design an efficient algorithm, all parameters –
computation and communication cost and the quality
of the solution should be considered altogether.
Computing low quality solutions very quickly or
computing high quality solutions very slowly is not
acceptable in many domains. Therefore, there should
be a balance between the time and the quality. The
algorithm that tries to create the balance among these
parameters is efficient and can be applied to different
domains. Our algorithm creates the balance among
the above mentioned parameters and creates the
solution with acceptable quality at lower costs.

We are planning to extend the algorithm by using
dynamic group formation by which the quality of the
solution can be increased and the complexity of the
algorithm can be decreased.

REFERENCES

[1] H. J. Levesque, P. R. Cohen, and J. Nunes. On acting together.
In AAAI, (1990).

[2] R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In 3rd
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages (438-445), July (2004).

[3] A. Petcu and B. Faltings. A Scalable Method for Multiagent
Constraint Optimization. In 9th International Joint Conference
on Artificial Intelligence, pages (266-271), Aug. 2005.

[4] M. Silaghi and D. Mitra. Distributed constraint satisfaction and
optimization with privacy enforcement. In IAT, 2004.

[5] R.R. Bakker, F. Dikker, F. Tempelman, and P.M. Wognum.
Diagnosing and solving over-determined constraint satisfaction
problems. In IJCAI, 1993.

[6] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
Distributed constraint satisfaction for formalizing distributed
problem solving. In International Conference on Distributed
Computing Systems, pages 614- 621, 1992.

[7] R. T. Maheswaran, , E. Bowring, J. P. Pearce, P. Varakantham,
M. Tambe, Taking DCOP to the real world: efficient complete
solutions for distributed multi-event scheduling. Proceedings
of the Third International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS 2004). New York,
NY, pp. 310 󲐀 317.

[8] E.Bigdeli, M.Rahmaninia, and M.Afsharchi. Pkopt: Faster k-
optimalsolution for dcop by improving group selection
strategy. In the proceeding 22th international conference on
tools with Artificial Intelligence (ICTAI). October, July 2010.

[9] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with quality
guarantees. Artificial Intelligence, 16(12) : 149 󲐀 180, 2005.

[10] A. Chapman, R. A. Micillo, R. Kota, and N. Jennings.
Decentralised dynamic task allocation: A practical game-
theoretic approach. In The 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-09),
pages 915 󲐀 922; 2009.

[11] Z. Yin, C. Kiekintveld, A. Kumar, M. Tambe, Local Optimal
Solutions for DCOP: New Criteria, Bound, and
Algorithm.Proc. of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009).

[12] S. Ali, S. Koenig, M. Tambe, Preprocessing techniques for
accelerating the DCOP algorithm ADOPT. In AAMAS, 2005.

[13] W. Yeoh, A. Felner and S. Koenig. BnB-ADOPT: An
Asynchronous Branch-and-Bound DCOP Algorithm.In
Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 591-
598, 2008.

[14] A. Petcu, B. Faltings, Mb-dpop: A new memory-bounded
algorithm for distributed optimization. In: Proc. of the 20th Int.
Joint Conf. on Artificial Intelligence (IJCAI). (2007) 1452-
1457.

[15] S. Fitzpatrick and L. Meertens. Distributed coordination
through anarchic optimization. In V. Lesser, C. L. Ortiz Jr.,
and M. Tambe, editors, Distributed Sensor Networks: A
Multiagent Perspective, pages 257󲐀295. Kluwer Academic
Publishers, 2003.

[16] A. Farinelli, A. Rogers, and N. Jennings. Bounded
approximate decentralized coordination using the max-sum
algorithm. In DCR, 2009.

[17] M. Yokoo and K. Hirayama. Distributed breakout algorithm
for solving distributed constraint satisfaction and optimization
problems. In Proc. ICMAS, pages 401 󲐀 408, 1996.

[18] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for DCOP: A graphical-game-based approach. In
PDCS, 2004.

[19] H. Katagishi and J.P. Pearce. KOPT: Distributed DCOP
algorithm for arbitrary k-optima with monotonically increasing
utility. In DCR-07, 2007.

[20] J. P. Pearce, and M. Tambe. Quality Guarantees on k-optimal
Solutions for Distributed Constraint Optimization Problems,
IJCAI 2007.

[21] J P. Pearce, R T. Maheswaran,Milind Tambe, Solution Sets in
DCOPs and Graphical Games: Metrics and Bounds. In
AAMAS06, May, 2006.

[22] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe
,Asynchronous Algorithms for Approximate Distributed
Constraint Optimization with Quality Bounds. Proc. of 9th Int.
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010).

[23] J. P. Pearce, M. Tambe, and R. Maheswaran, Solving
Multiagent Networks using Distributed Constraint
Optimization, AAAI,2007.

[24] D. Beasley, D.R. Bull, R.R. Martin, An overviewof genetic
algorithms: Part 1, fundamentals. University Computing
1993;15(2):58-69 Department of Computing Mathematics,
University of Cardiff, UK.

[25] M. Vinyals, E. Shieh, J. Cerquides, J. A. Rodriguez-Aguilar,
Z. Yin, M. Tambe, and M. Bowring. Quality guarantees for
region optimal DCOP algorithms. In Proceedings of the Tenth
International Conference on Autonomous Agents and
Multiagent Systems, pages 133U˝ 140, 2011.

[26] M. Mitchell, An introduction to genetic algorithms, MIT Press,
1998.

[27] A. Farinelli, M. Vinyals, A. Rogers and N. R. Jennings,
Distributed Constraint Handling and Optimization,MIT Press,
2013.

[28] J. Davin and P. J. Modi. Impact of problem centralization in
distributed constraint optimization algorithms. In AAMAS,
2005.

[29] T. Grinshpoun, A. Grubshtein, R. Zivan, A. Netzer, and A.
Meisels, Asymmetric Distributed Constraint Optimization
Problems. Journal of Artificial Intelligence Research, 47, 613-
647, (2013).

[30] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalization and
algorithms. Knowledge and Data Engineering, 10(5):673-685,
1998.

Maryam Rahmaninia was born in
Ghasreshirin, Kermanshah, Iran, In
Aug.1985. She received her B.Sc.
degree in Computer Science from
Shahid Beheshti University, Tehran,
Iran, in 2008 and M. Sc. Degree in
Computer Science from Institute for
Advanced Studies in Basic Sciences

university Zanjan, Iran in 2010. Her interests are in neural
network, theoretical computer science and multi agent
systems.

Elnaz Bigdeli is Ph.D. student at
Department of Computer Science &
Engineering at the University of
Ottawa. She received M.Sc. degree in
Computer Science in Institute for
Advanced Studies in Basic Science
(IASBS) in 2011. She completed her

B.Sc. degree in Information Technology Engineering in
(IASBS) in 2008. Her research interests lie in the area of
machine learning and data mining. In recent years, she has
focused on stream data clustering. He has collaborated
actively with researchers in other disciplines of computer
science, particularly social networks and distributed
systems.

Mohsen Afsharchi received his
M.Sc. degree in Computer
Engineering from the Iran University
of Science and Technology in 1996,
and Ph.D. in Artificial Intelligence
from the University of Calgary,

Canada in 2006, respectively. From 1996 to 2002 he was a
University Lecturer in the University of Zanjan. Since 2006
he has been with the Computer Engineering Department of
the University of Zanjan where he leads the Multi-agent
Systems Lab. He is also adjunct Researcher in the Institute
for Advanced Studies in Basic Sciennces (IASBS) , Zanjan,
Iran. He is currently associate professor and president of the
University of Zanjan. His research interests are in Multi-
agent Learning, Probabilistic Reasoning and Distributed
Constraint Optimization.

