
Supervised Word Sense Disambiguation
Using New Features Based on Word
Embeddings
Majid Fahandezi Sadi a, Ebrahim Ansari b,∗ and Mohsen Afsharchi a
a Department of Computer Engineering, University of Zanjan, University of Zanjan Blvd. Zanjan, Iran.
E-mail: {mfsadi,afsharchim}@znu.ac.ir
b Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences
(IASBS), No. 444, Yousef Sobouti Blvd. Zanjan, Iran.
E-mail: ansari@iasbs.ac.ir

Abstract. Supervised Word Sense Disambiguation (WSD) systems use features of the target word and its context to learn about
all possible samples in an annotated dataset. Recently, word embeddings have emerged as a powerful feature in many NLP
tasks. In supervised WSD, word embeddings can be used as a high-quality feature representing the context of an ambiguous
word. In this paper, four improvements to existing state-of-the-art WSD methods are proposed. First, we propose a new model
for assigning vector coefficients for a more precise context representation. Second, we apply a PCA dimensionality reduction
process to find a better transformation of feature matrices and train a more informative model. Third, a new weighting scheme is
suggested to tackle the problem of unbalanced data in standard WSD datasets and finally, a novel idea is presented to combine
word embedding features extracted from different independent corpora, which uses a voting aggregator among available trained
models. All of these proposals individually improve disambiguation performance on Standard English lexical sample tasks, and
using the combination of all proposed ideas makes a significant improvement in the accuracy score.

Keywords: Word Sense Disambiguation, Word Embedding, Supervised Learning, Support Vector Machine

1. Introduction

Word Sense Disambiguation is a long-standing
problem in computational linguistics. It is defined as
the problem of finding the most probable sense of a
multi-sense word in a sentence. There are mainly four
approaches to solving the problem: Supervised, unsu-
pervised, semi-supervised and knowledge-based [1].
In supervised WSD, the problem of finding the most
probable sense of a word is considered as a classifi-
cation task; word senses are classes and context gives
some clues for training a model.

*Corresponding author. Tel.: +98 24 3315 3380; E-mail:
ansari@iasbs.ac.ir.

Supervised WSD systems use standard features such
as Part of Speech (POS) tags, surrounding words and
collocations extracted from the context of the target
word, and it is assumed that they have enough infor-
mation to represent the feature vector of an ambiguous
word. It Makes Sense (IMS) is one of the few open-
source frameworks for supervised WSD and it is so
flexible that different features and classification algo-
rithms can be employed to train models for predicting
the intended sense of an ambiguous word [33].

In recent years, word embeddings have become a
point of attention for NLP applications by provid-
ing invaluable information on semantic relations be-
tween words in a corpus. They have been applied suc-
cessfully to many NLP tasks such as opinion mining
[16], machine translation [34], named entity recogni-

tion [13] , and dependency parsing [31]. Using word
embeddings as a feature in a supervised WSD system
was studied in several works. A recent study leveraged
word embeddings as a new feature for IMS [10]. In
this paper, we first introduce new coefficients and in-
corporate them into the feature vector generation pro-
cess of word embeddings. We modify the state-of-the-
art work of Iacobacci et al. [10]. Second, the effect
of dimensionality reduction on word embedding based
features is examined using the PCA algorithm. Third,
a weighting method is used to alleviate the problem of
data imbalance in available corpora. At last, a method
for aggregating different word vectors from different
corpora is discussed. We evaluate all of these proposed
methods on two English lexical sample datasets, Sen-
seval 2 and Senseval 3 and show that they achieve bet-
ter performance compared to the previous approaches.

The main contributions of this work can be summa-
rized as follows:

a) Using distance-based and frequency-based coef-
ficients in building word embedding vectors for WSD
tasks b) Using PCA as a pre-processing step to find
a better transformation of feature matrices c) Consid-
ering the imbalanced data problem in WSD tasks by
introducing a simple solution based on class weight-
ing d) Introducing a voting strategy to exploit different
word embeddings extracted from different corpora

The rest of the paper is organized as follows: Sec-
tion 2 studies different WSD methods which have used
word embeddings as a feature. Our proposed meth-
ods are introduced in Section 3. Section 4 includes the
experiments and results, as well as comparisons with
other works, and finally, Section 5 concludes the paper.

2. Related Works

Word embeddings are a group of techniques that
map words from a high dimensional space, where each
word is a dimension, to a much lower-dimensional
space; the new one is called distributed representation.
Traditionally, these word embeddings were generated
using methods such as dimensionality reduction on co-
occurrence matrix of words [14], or probabilistic meth-
ods [7].

Bengio et al. proposed neural language modelling
and derived word embeddings using deep neural net-
works [3]. Mikolov et al. popularized neural word em-
beddings by introducing two shallow neural network

models, skip-gram and CBOW. Interesting relational
information can be extracted using these embeddings
[18]. A deeper model to achieve word embeddings was
proposed by Pennington et al. [23]. One of the main
drawbacks of word embeddings is their inability to
capture polysemy.

Considering word embedding applications, the ex-
isting WSD approaches can be categorized into two
groups: First, works that try to modify pre-trained
word embeddings or the training algorithm to achieve
sense embeddings. These approaches try to solve Word
Sense Induction (WSI) as a clustering problem by in-
tegrating sense embeddings into their training models.
The second group of works try to use word embed-
dings as a feature to the supervised task of sense clas-
sification (WSD).

2.1. Sense Induction

Guo et al. proposed using translation as a tool to
cluster word senses and built a monolingual sense
tagged corpus. When an ambiguous word is translated
to another language, to a great amount, the ambiguity
is not present in the target language. Training a recur-
rent neural network on word clusters results in sense
embeddings [8].

Another line of work deals with the training pro-
cess of skip-gram to achieve sense specific word em-
beddings [29,21,15]. Some other works use knowledge
bases or sense inventories to learn sense embeddings.
Rothe and Schütze introduced Autoextend, a system
which acquires word embeddings as input and derives
embeddings for synsets and lexemes using WordNet
[19] as an external resource [27]. Iacobacci et al. used
BabelNet [20] as a sense inventory to create sense vec-
tors for word similarity tasks [9]. Pelevina et al. intro-
duced a method based on using ego networks to cluster
word vectors and induce word senses [22].

These kinds of sense embeddings are useful for im-
proving the performance of WSI, Part of Speech tag-
ging, Named Entity Recognition and so on.

2.2. Sense Classification

Word embeddings application in WSD mainly con-
sists of using them as new features in a supervised
learning algorithm. Taghipour and Ng applied a modi-
fied version of word embeddings to IMS system. Their
strategy for incorporating word vectors in WSD was

to use the vectors of all surrounding words of the tar-
get word in a given window as new features. They im-
proved English lexical sample and all words tasks [28].
Chen et al. introduced a knowledge-based approach
to WSD using word embeddings; they built context
vectors and sense vectors for each target word and
ranked word senses based on two simple algorithms to
measure the similarity between the context vector and
sense vectors [4].

Iacobacci et al. introduced a new method for using
word embeddings as features to a WSD system [10].
We modified this work, proposing four different ideas.
They will be discussed in more details in the next sec-
tion.

There is also a recent trend toward using neural
networks to improve the performance of WSD. Con-
text2vec is a neural network architecture which is
based on word2vec [18] and generates context vectors
for every target word in a corpus using Long Short-
Term Memory (LSTM). Then the resulting vectors
could be used in several NLP tasks including WSD.
Kågebäck and Salomonsson proposed a language-
independent WSD system which uses bidirectional
LSTM architecture [12]. Yuan et al. proposed two
methods for improving WSD tasks, the first one is an
LSTM based algorithm which tries to predict a held-
out word using the surrounding context words. Their
second idea is using a semi-supervised approach to
label more data given some labeled samples based
on label propagation. However, the best performance
was achieved by combining the two ideas [32]. Ra-
ganato et al. introduced a new perspective for super-
vised WSD in which they used neural models to disam-
biguate a sequence of words instead of creating a sin-
gle classifier per word. They evaluated different neural
models and found that sequence learning is the best
performing and most consistent method based on dif-
ferent tasks in different languages [25]. Pesaranghader
et al. used a Bidirectional LSTM to disambiguate all
words in a text document without having to train a clas-
sifier per word. Their network architecture includes
sense and word embedding layer and considers word
order [24].

3. Proposed Methods

Here we introduce our new proposed methods re-
garding a supervised WSD system which uses word
embeddings as features. The First two methods gen-

erate word embeddings feature vectors in an efficient
way, the third one uses a weighting strategy to solve
data imbalance problem and the last one introduces
a voting plan between different models on different
types of word embeddings.

Figure 1 shows the block diagram of the entire sys-
tem. The bottom right of the figure illustrates our pro-
posed voting mechanism. When a new sample enters
to the system, three SVM classifiers trained using dif-
ferent embedding types, give three lists of probabilities
for all of the senses of the target word, and the class
with the maximum sum is selected as the correct cor-
responding sense.

The second and third ideas, Using PCA and weight-
ing schema respectively, are shown on the top of the
figure using dashed line rectangles. All four proposed
ideas in this paper are independent of each other and
could be considered as an independent extension to
IMS system [33]. In our methodology, we investigated
the different combinations of those proposed methods
to find the best possible solution for our working sys-
tem. The following sub-sections introduce each of the
ideas in details.

Fig. 1. The block diagram of the entire system including IMS frame-
work and the proposed ideas which are integrated into the system.
The second and third ideas, weighting system and using PCA re-
spectively, are shown on the top of the figure and the voting scheme
is shown on the bottom right of the figure divided using the dotted
line shapes.

3.1. Improved Coefficient Scheme

Iacobacci et al. proposed four different strategies in
order to use word embeddings as features of the super-
vised WSD system [10]:

1. Concatenation: in this strategy, the word vectors
of the context words of the target word are con-
catenated together to make a big vector equal to
the sizes of all vectors in the context window.
Given W, as window size and D as vector dimen-
sionality, and I as the index of the target word,
ith dimension of the feature vector, ei, is given
as:

ei =

wi mod D, I−W+b i

D c
if b i

D c < W

wi mod D, I−W+1+b i
D c

otherwise

(1)

where wij is the weight associated with the ith

dimension of the vector of jth word in the sen-
tence.

2. Averaging: in this strategy a regular average over
the word vector of context words is used. The
average strategy calculates ei as:

ei =

I+W∑
j=I−W

j 6=I

wij

2W
(2)

where I is the index of the target word and wij is
the ith dimension of the jth word in the window.

3. Fractional Decay: in this strategy a weighted av-
erage of vectors for each context word is calcu-
lated with weights based on the distance from the
target word:

ei =

I+W∑
j=I−W

j 6=I

wij
W − |I− j|

W
(3)

4. Exponential Decay: this strategy has achieved
the best performance among the four strategies.
The vector values are calculated using:

ei =

I+W∑
j=I−W

j 6=I

wij(1− α)|I−j|−1 (4)

where α = 1−0.1(W−I)
−1

. Here, weights expo-
nentially decay as the distance to the target word
increases.

In our experiments the Exponential Decay strategy has
the best performance and accuracy among the four
strategies. It shows that not only the distance from
the target word is important and vectors should be
weighted based on it, but also when the weighting is
in the exponential form, it has the best effect on the
resulting averaged vector of context.

In the proposed method, two different coefficients
were used to capture more information from the con-
text of the target word and try to generate a richer word
embedding feature. The first coefficient is surrounding
word distance from the target word. This distance is
not a mere sentential distance but is calculated as the
Euclidean distance of the target word in vector space
from each of the surrounding words in its context.

For example, in the sentence “I went to the bank
to deposit money”, although both “went” and “money”
have a sentential distance of 3 to “bank”, in vector
space of word embeddings, the Euclidean distance of
“money” to “bank” is probably smaller than that of
“went” and “bank”. Our intuition behind using this co-
efficient is that words that are closer in terms of vector
distance, i.e. words that have similar meanings, should
contribute more than distant and non-similar words. A
new equation to corporate word vector similarities is
defined as follows:

ei =

I+W∑
j=I−W

j 6=I

distij · wij(1− α)|I−j|−1 (5)

where, distij is the vector distance of word j from word
i; all the other parameters remain unchanged from Eq.
(4).

The second coefficient is the word frequency co-
efficient. Again considering the bank example, words
such as “I, to, the” are very frequent words which are
known as English stopwords. We did not decide to
remove stopwords but weighed the feature vector of
word embeddings on inverse term frequency (TF) to
reduce the effect of high-frequency words on the re-
sulting feature vectors. English Wikipedia was used for
counting word occurrences and the following equation
shows how to calculate weights based on word fre-
quencies:

ei =

I+W∑
j=I−W

j 6=I

countj · wij(1− α)|I−j|−1 (6)

where countj is the inverse of the frequency of the word
j in English Wikipedia, and again all the other param-
eters remained unchanged.

3.2. Applying Dimensionality Reduction

Inspired by the work of Raunak, which presents a di-
mensionality reduction and post-processing technique
to reduce the size of word embeddings [26], we per-
formed a linear dimensionality reduction using PCA
algorithm on pre-trained word embeddings to evaluate
its effects on WSD performance.

Doing a PCA while holding the same dimensions
as input dimensions yields a better result comparing
to the real reduction of vectors. So long as the calcu-
lations after this step are not linear, the results could
be biased towards a given representation over others.
Therefore, the resulting dimensions of PCA were set
as the input vectors dimensions. In this sense, PCA is
doing a linear transformation, better distributing fea-
tures in the n-dimensional space. Based on our experi-
ments, the post-processing algorithm [26], did not im-
prove the performance of our models. So only the best
output representations of PCA are used in our work.

3.3. New Weighting Scheme

The sense frequency distribution of multi-sense
words is not uniform, and the same unbalanced char-
acteristic is also seen in standard WSD datasets such
as Senseval 2 and Senseval 3. In supervised WSD, ev-
ery sense is a class and a supervised learning algo-
rithm should assign a class, i.e. sense, to a sample. In
a supervised learning task, when the number of train-
ing samples of different classes is different, a problem
arises that is known as imbalanced data [6].

Table 1 shows sense distribution of one word from
Senseval 2 and one word from Senseval 3 English
Lexical Sample tasks as an example of imbalanced
data in WSD datasets. In an imbalanced dataset, a
classifier develops a bias towards the majority class
(classes) because the minority class (classes) is treated
as noise. Several methods have been proposed to deal
with imbalanced data problem such as undersampling,
oversampling, using ensemble classifiers, and cost-
sensitive methods [6]. We use a simple approach based
on the latter.

Table 1

Sense frequency of two sample words from Senseval 2 (Cool) and
Senseval 3 (Party) English Lexical Sample tasks

WORD Cool (a) Party (n)

N
um

be
ro

fe
ac

h
se

ns
e

in
tr

ai
ni

ng
se

t

sense 1 53 148

sense 2 25 15

sense 3 3 16

sense 4 8 39

sense 5 0 17

sense 6 1 0

sense 7 18 0

Support Vector Machine (SVM) is a popular dis-
criminative classifier defined by a separating hyper-
plane. Given a number of points in an n-dimensional
space, SVM tries to find an optimal hyper-plane which
separates these data points into two classes (Although
real WSD datasets have more than two classes, SVM
can be generalized to support multi-label classifica-
tion). A possible hyper-plane can be represented by:

W ′ · Φ(x+ b) = 0. (7)

where W′ is the weight vector normal to the hyper-
plane and Φ(x) is the mapping function that trans-
forms data points to a higher dimensional space. So the
maximum margin hyper-plane can be found by solving
the following optimization problem [30]:

min(
1

2
W ′ ·W ′+ C+

l∑
i|yj=+1

ζi + C−
l∑

i|yj=−1

ζi)

s.t. yi(W ′ · Φ(xi) + b) ≥ 1− ζi (8)

ζi ≥ 0, i = 1, ...l

where ζi is the slack variable for misclassified sam-
ples, such that

∑l
i|yj=+1 ζi and

∑l
i|yj=−1 ζi are the

penalty for the total amount of training errors for posi-
tive and negative classes respectively. In case of imbal-
anced data, parameter C can control the amount of the
penalty for weights on each class. Now C+ and C- can
be chosen in a way that reduces the effect of data im-
balance. Akbani et al. argued that by setting C−/C+

equal to the minority to majority class ratio, an optimal
solution is obtained [2].

In our proposed method for handling imbalanced
data in a multi-label classification task using SVM, the
C parameter of each class is computed as follows:

Ci = max(S)/count(i) (9)

where S is the set of all sense counts for a word and
count(i) is the number of occurrences of sense i (class
i) of that word.

3.4. Voting as a Word Embeddings Aggregation
Method

One of the main drawbacks of word embeddings
is their inability to capture polysemy. For every word
such as bank, there exists exactly one vector in the vec-
tor space. The word bank has 10 senses as a noun ac-
cording to WordNet [19]. So the vector representation
for this word is the combination of all the 10 senses.
Our idea is that using different embeddings built on
different corpora, or built using different algorithms,
one can capture more information.

Figure 2 shows the most similar words to the word
apple using word embeddings built on Wikipedia cor-
pus and Figure 3 shows the most similar words to the
word apple using word embeddings built on Google
News corpus. These two figures show an important
point: each corpus has its own domain, and word em-
beddings which are built on one corpus have different
biases, in terms of word sense, to the other. This sim-

Fig. 2. The vector space of Wikipedia embeddings, where apple is
near the fruit sense and far from the company sense.

Fig. 3. The vector space of Google news embeddings, where apple
is located between fruit sense and company sense.

ple assumption was not considered in previous works
as far as we know.

We have selected three different kinds of word em-
beddings from two different corpora. The first one is
the word vectors for the 2014 Wikipedia dump which
were used by Iacobacci et al. [10]; it has 400 dimen-
sions and was trained using word2vec [18]. The sec-
ond word vectors were trained using fasttext algo-
rithm1[11] with 300 dimensions and the last one is
Google News2 word embeddings with 300 dimensions
which was trained using word2vec.

Each of these word embeddings is used as a fea-
ture to the supervised learning algorithm, and the al-
gorithm gives a probability for each sense of a poly-
semous word. Using the following equation, the most
probable sense of a word w in question is chosen:

Sensev = arg maxs f(w, s) (10)

f(w, s) =
∑n

i=1(si|si is the probability of

sense s of word w for embedding type i.)

where n is the total number of embedding types. Here
the sense with maximum total probability among dif-
ferent embedding types is chosen as the target sense of
the given word w.

1https://github.com/facebookresearch/fastText/blob/
masteer/pretrained-vectors.md

2https://code.google.com/archive/p/word2vec/

Table 2
Different used word embeddings specifications

Word Embeddings Dimensions Tokens
Wikipedia 2014 400 1604163
Google News 300 3000000
Fasttext 300 2519370

In case of using only one type of word embeddings,
according to our experiments, Wikipedia embeddings
had a better performance compared to the other two,
but the voting between these three embeddings yields a
better result. This shows that voting schema is a robust
technique; however using more embeddings as voters
not necessarily improves the result. Table 2 summa-
rizes parameters of three word embedding types.

4. Results and Discussion

We evaluated the proposed methods on English lex-
ical sample tasks. Senseval 2 [5] and Senseval 3 [17]
challenges provide standard training and test data for
English WSD tasks. Lexical sample includes training
data for a number of selected words; each sample is a
paragraph which contains the target word and its sur-
rounding context. We have used IMS [33] to train a
model for every word and the default classifier is a lin-
ear Support Vector Machine (SVM).

4.1. Experimental Setup

Table 3 shows the number of word types, training
samples and test samples for Senseval 2 and Senseval
3 English lexical sample tasks.

In all of the proposed methods, we have used an Ex-
ponential Decay strategy [10] to generate word em-
beddings feature vectors. The baseline WSD system is
IMS which uses SVM as the classifier. In addition to
the word embeddings feature, standard WSD features,
surrounding words, POS tags of surrounding words,
and collocations were used too.

Table 3

Information about Senseval 2 and Senseval 3 English Lexical Sam-
ple datasets

Senseval 2 Senseval 3
Word Types 73 57
Training Samples 8611 8022
Test Samples 4328 3944

4.1.1. Details of New Coefficients
According to our experiments, we found that the

basic and original sentential distance coefficient pro-
posed by Iacobacci et al. in Eq. (4) is effective enough.
So we decided to combine our new proposed coef-
ficients to existing coefficient proposed by Iacobacci
et al. [10]. The first 400 entries of the word embedding
feature vector are reserved for the original Exponential
Decay strategy indicated at Iacobacci et al. and using
the second 400 entries (800 in total), two models are
considered to integrate the proposed coefficients into
the system as follows:

1. Distance based coefficient:

– Version 1. Combining the original coefficients
and the new ones:

ei =

I+W∑
j=I−W
j 6=I

distij · wij(1− α)
|I−j|−1

,

(11)

We referred to this method at our result tables
as Coeff (V1).

– Version 2. Omitting the original coefficient:

ei =

I+W∑
j=I−W
j 6=I

distij · wij (12)

We referred to this method at our result tables
as Coeff (V2).

2. Word frequency based coefficient:

– Version 1. Combining the original coefficients
and the new ones:

ei =

I+W∑
j=I−W
j 6=I

countj · wij(1− α)
|I−j|−1

,

(13)

We referred to this method at our result tables
as Wcount (V1).

– Version 2. Omitting the original coefficient:

ei =

I+W∑
j=I−W
j 6=I

countj · wij (14)

We referred to this method at our result tables
as Wcount (V2).

4.2. Results

Table 4 shows the results of Senseval 2 English lex-
ical sample task for our proposed methods discussed
in Subsections sections 3.1 to 3.3. We compared our
results with the work of Iacobacci et al. [10] because
it outperformed all of the previous works [27,28,4]. It
can be seen that almost all of the proposed ideas are
similar to or better than the baseline. In some cases,
when using one of the proposed ideas individually
leads to a worse result, e.g., word count coefficient or
Wcount in Senseval 2, and distant coefficient or Coeff
in Senseval 3 dataset, the combination idea helps us to
achieve a better result.

Table 4

The result of all proposed methods on Senseval 2 English Lexical
Sample task. IMSE is the baseline [10], and Coeff, Weight and PCA
are our new coefficient, weighting scheme and PCA based methods,
respectively. The number of all test cases is 4328. F1: F1 score per-
centage.

Method Correct F1

IMSE* 3070 70.9
IMSE + Coeff (V1) 3068 70.9
IMSE + Coeff (V2) 3071 71.0
IMSE + Wcount (V1) 3064 70.8
IMSE + Wcount (V2) 3065 70.8
IMSE + Weight 3079 71.1
IMSE + PCA 3076 71.1
IMSE + PCA (400) + Coeff (V1) 3075 71.0
IMSE + PCA (400) + Coeff (V2) 3092 71.4
IMSE + PCA (400) + Wcount (V1) 3076 71.1
IMSE + PCA (400) + Wcount (V2) 3075 71.0
IMSE + PCA (400) + Weight 3084 71.3
IMSE + PCA (400) + Coeff (V1) + Weight 3088 71.3
IMSE + PCA (400) + Coeff (V2) + Weight 3086 71.3
IMSE + PCA (400) + Wcount (V1) + Weight 3086 71.3
IMSE + PCA (400) + Wcount (V2) + Weight 3085 71.3
IMSE + Coeff (V1) + Weight 3086 71.3
IMSE + Coeff (V2) + Weight 3085 71.3
IMSE + Wcount (V1) + Weight 3077 71.1
IMSE + Wcount (V2) + Weight 3078 71.1

Similarly, Table 5 shows the results for Senseval
3 English lexical sample task. In both of the tasks,
the new coefficient method, weighting scheme, dimen-
sionality reduction technique, and different combina-

Table 5

The result of all proposed methods on Senseval 3 English Lexical
Sample task. IMSE is the baseline [10], and Coeff, Weight and PCA
represent our new coefficient, weighting scheme and PCA based
methods, respectively. The number of all test cases is 3944. F1: F1
score percentage.

Method Correct F1

IMSE* 2990 75.8
IMSE + Coeff (V1) 2989 75.8
IMSE + Coeff (V2) 2993 75.9
IMSE + Wcount (V1) 2997 76.0
IMSE + Wcount (V2) 2989 75.8
IMSE + Weight 2995 75.9
IMSE + PCA 2993 75.9
IMSE + PCA (400) + Coeff (V1) 2988 75.8
IMSE + PCA (400) + Coeff (V2) 2995 75.9
IMSE + PCA (400) + Wcount (V1) 2995 75.9
IMSE + PCA (400) + Wcount (V2) 2989 75.8
IMSE + PCA (400) + Weight 2989 75.8
IMSE + PCA (400) + Coeff (V1) + Weight 2991 75.8
IMSE + PCA (400) + Coeff (V2) + Weight 2995 75.9
IMSE + PCA (400) + Wcount (V1) + Weight 2998 76.0
IMSE + PCA (400) + Wcount (V2) + Weight 2989 75.8
IMSE + Coeff (V1) + Weight 2988 75.8
IMSE + Coeff (V2) + Weight 2995 75.9
IMSE + Wcount (V1) + Weight 2991 75.8
IMSE + Wcount (V2) + Weight 2991 75.8

tions of these methods are individually assessed as
well as combinations of all methods.

The last method, voting scheme, was separately
compared to the baseline because it is a different
method and could be independently applied to every
WSD system which uses word embeddings as a fea-
ture. The result of this method is shown in Table 6.

Table 6

The comparison between baseline (IMSE) and the new voting sys-
tem (IMSE + Voting) on both Senseval 2 (with 4328 samples) and
Senseval 3 English Lexical Sample tasks (with 3944 samples). F1:
F1 score percentage.

Senseval 2 Senseval 3
Method Correct F1 Correct F1

IMSE 3070 70.9 2990 75.8
IMSE + Voting 3071 71.0 3004 76.2

4.3. Analysis

Our results show that our proposed methods outper-
form the work of Iacobacci et al. [10] in both Sen-
seval 2 and Senseval 3 datasets. Although almost all
of the methods have an improvement over the base-
line, the best performance is achieved by applying a
combination of all three ideas, namely the new coef-
ficient, weighting and using PCA, into the base sys-
tem. In some cases, the combination strategy is not the
best choice, e.g. combining weighting idea and PCA
feature reduction in Senseval 3 does not improve the
accuracy at all. As it was discussed in Section 3, the
idea of voting among different systems using differ-
ent word embeddings was successful in our experi-
ments. The important point is that based on our experi-
ments both Fasttext and Google news Embeddings had
a lower F1 score comparing to Wikipedia word embed-
dings when trained separately; but voting among these
three– Wikipedia, Fasttext and Google news– had a
better result.

Furthermore, the proposed weighting scheme, could
be applied to any standard dataset whose data is not
balanced enough, and since word senses naturally have
a non-uniform distribution, this method may improve
the result in other natural language processing tasks.

5. Conclusion

At the moment, supervised WSD approaches out-
perform other available approaches. Exploitation of
word embeddings as a feature representation for se-
mantic information of words in the context of an am-
biguous word has recently been introduced in WSD. In
this work, we introduced the following different ideas
to improve WSD accuracy, and measured encourag-
ing performance improvements on both standard WSD
tasks (Senseval 1 and Senseval 2):

– Using a new coefficient scheme which is ap-
plied to a state-of-the-art supervised WSD system
(IMS) which uses word embeddings as a high-
quality feature vector

– Applying PCA as a dimensionality reduction
technique in order to find a better transformation
of word embedding feature vectors before train-
ing our supervised models

– Using a weighting system to decrease the nega-
tive effects of data imbalance in existing WSD
datasets on accuracy

– A novel voting idea to aggregate word embed-
dings created from different corpora

All of the proposed ideas were evaluated individu-
ally on standard English lexical sample tasks and re-
sults show a consistent improvement over the baseline.
Also, a combination of our ideas and voting scheme
outperform the baseline and all individual F1 scores
with a score of 71.4% and 76.2% for Senseval 2 and
Senseval 3 tasks respectively (compared to the baseline
scores of 70.9% and 75.8%).

References

[1] Eneko Agirre and Philip Edmonds. 2007. Word sense disam-
biguation: Algorithms and applications, volume 33. Springer
Science & Business Media.

[2] Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. 2004.
Applying support vector machines to imbalanced datasets.
In European conference on machine learning, pages 39–50.
Springer.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Jauvin. 2003. A neural probabilistic language model. Jour-
nal of machine learning research, 3(Feb):1137–1155.

[4] Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014. A uni-
fied model for word sense representation and disambiguation. In
Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1025–1035.

[5] Philip Edmonds and Scott Cotton. 2001. Senseval-2: overview.
In The Proceedings of the Second International Workshop on
Evaluating Word Sense Disambiguation Systems, pages 1–5. As-
sociation for Computational Linguistics.

[6] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Hum-
berto Bustince, and Francisco Herrera. 2012. A review on en-
sembles for the class imbalance problem: bagging-, boosting-
, and hybrid-based approaches. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews),
42(4):463–484.

[7] Amir Globerson, Gal Chechik, Fernando Pereira, and Naftali
Tishby. 2007. Euclidean embedding of co-occurrence data.
Journal of Machine Learning Research, 8(Oct):2265–2295.

[8] Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. 2014.
Learning sense-specific word embeddings by exploiting bilin-
gual resources. In Proceedings of COLING 2014, the 25th In-
ternational Conference on Computational Linguistics: Techni-
cal Papers, pages 497–507.

[9] Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto
Navigli. 2015. Sensembed: Learning sense embeddings for
word and relational similarity. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), volume 1, pages 95–105.

[10] Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto
Navigli. 2016. Embeddings for word sense disambiguation: An
evaluation study. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 897–907.

[11] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs
Douze, Hérve Jégou, and Tomas Mikolov. 2016. Fasttext.
zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651.

[12] Mikael Kågebäck and Hans Salomonsson. 2016. Word sense
disambiguation using a bidirectional lstm. arXiv preprint
arXiv:1606.03568.

[13] Guillaume Lample, Miguel Ballesteros, Sandeep Subrama-
nian, Kazuya Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition. arXiv preprint
arXiv:1603.01360.

[14] Rémi Lebret and Ronan Collobert. 2013. Word emdeddings
through hellinger pca. arXiv preprint arXiv:1312.5542.

[15] Jiwei Li and Dan Jurafsky. 2015. Do multi-sense embed-
dings improve natural language understanding? arXiv preprint
arXiv:1506.01070.

[16] Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-grained
opinion mining with recurrent neural networks and word em-
beddings. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1433–1443.

[17] Rada Mihalcea, Timothy Chklovski, and Adam Kilgarriff.
2004. The senseval-3 english lexical sample task. In Proceed-
ings of SENSEVAL-3, the third international workshop on the
evaluation of systems for the semantic analysis of text.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119.

[19] George A Miller. 1995. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41.

[20] Roberto Navigli and Simone Paolo Ponzetto. 2010. Babelnet:
Building a very large multilingual semantic network. In Pro-
ceedings of the 48th annual meeting of the association for com-
putational linguistics, pages 216–225. Association for Compu-
tational Linguistics.

[21] Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and
Andrew McCallum. 2015. Efficient non-parametric estimation
of multiple embeddings per word in vector space. arXiv preprint
arXiv:1504.06654.

[22] Maria Pelevina, Nikolay Arefyev, Chris Biemann, and Alexan-
der Panchenko. 2017. Making sense of word embeddings. arXiv
preprint arXiv:1708.03390.

[23] Jeffrey Pennington, Richard Socher, and Christopher Manning.
2014. Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 conference on empirical methods in natu-
ral language processing (EMNLP), pages 1532–1543.

[24] Pesaranghader, A., Pesaranghader, A., Matwin, S., and
Sokolova, M. (2018). One single deep bidirectional lstm net-
work for word sense disambiguation of text data. In Advances
in Artificial Intelligence: 31st Canadian Conference on Artifi-
cial Intelligence, Canadian AI 2018, Toronto, ON, Canada, May
8–11, 2018, Proceedings 31, pages 96–107. Springer.

[25] Alessandro Raganato, Claudio Delli Bovi, and Roberto Nav-
igli. 2017. Neural sequence learning models for word sense dis-
ambiguation. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pages 1156–
1167.

[26] Vikas Raunak. 2017. Effective dimensionality reduction for
word embeddings. arXiv preprint arXiv:1708.03629.

[27] Sascha Rothe and Hinrich Schütze. 2015. Autoextend: Extend-
ing word embeddings to embeddings for synsets and lexemes.
arXiv preprint arXiv:1507.01127.

[28] Kaveh Taghipour and Hwee Tou Ng. 2015. Semi-supervised
word sense disambiguation using word embeddings in general
and specific domains. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 314–
323.

[29] Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong
Chen, and Tie-Yan Liu. 2014. A probabilistic model for learn-
ing multi-prototype word embeddings. In Proceedings of COL-
ING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers, pages 151–160.

[30] Konstantinos Veropoulos, Colin Campbell, Nello Cristianini,
et al. 1999. Controlling the sensitivity of support vector ma-
chines. In Proceedings of the international joint conference on
AI, volume 55, page 60.

[31] Xiang Yu and Ngoc Thang Vu. 2017. Character composi-
tion model with convolutional neural networks for dependency
parsing on morphologically rich languages. arXiv preprint
arXiv:1705.10814.

[32] Dayu Yuan, Julian Richardson, Ryan Doherty, Colin Evans,
and Eric Altendorf. 2016. Semi-supervised word sense disam-
biguation with neural models. arXiv preprint arXiv:1603.07012.

[33] Zhi Zhong and Hwee Tou Ng. 2010. It makes sense: A wide-
coverage word sense disambiguation system for free text. In
Proceedings of the ACL 2010 system demonstrations, pages 78–
83. Association for Computational Linguistics.

[34] Will Y Zou, Richard Socher, Daniel Cer, and Christopher D
Manning. 2013. Bilingual word embeddings for phrase-based
machine translation. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages
1393–1398.

