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Abstract

This paper proposes a novel multi-agent unit commitment model
under Smart Grid (SG) environment to minimize the demand satisfaction
error and production cost. This is a distributed solution applicable in
non-deterministic environments with stochastic parameters intending to
solve Distributed Stochastic Unit Commitment (DSUC) problem. We
use multi-agent reinforcement learning (RL) in which agents learn as
independent learners to cooperatively satisfy the demand profile. The
learning mechanism proceeds using a reward signal, which is given based
on the performance of the entire system as well as the impact of the
joint action of the agents. The learning agent utilizes a novel multi-agent
version of Fuzzy Least Square Policy Iteration (FLSPI) as a model-free RL
algorithm to approximate Q-function. Based on this approximation, the
agent makes the best decision to achieve the goals while considering the
constraints governing the system. Uncertainty sources in our definition of
the problem are fluctuations in the predicted demand function, random
productions of clean energy generators and the possibility of accidental
failure in power generators. Training for one time interval (i.e. one
season or one year) consisting of several time intervals (i.e. days) can be
simultaneously conducted by one trial in our method. We have conducted
our experiment in two different frameworks. These frameworks are defined
based on the problem complexity in terms of the number of generators,
the uncertainties in the environment and the system constraints. The
results show that the learning agent learns to satisfy the demand profile
as well as other constrains.
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1 Introduction

In the present era, the supply of electricity in its traditional form is carried out
based on the Primary Energy Sources (PES) to meet the industrial demands.
PES are operationally expensive and generation of electricity by these resources
causes air pollution and environmental consequences. Additionally, centralized
production and long-distance transmission lead to low reliability. Efforts to
resolve these challenges have led to birth of a new power grid called Smart
Grid. In addition, distributed generation of power, as one of the most important
smart grid goals, employs innovative products and services together with
intelligent monitoring, control, communication, and self-healing technologies
[9]. This smartness offers various benefits such as higher reliability, less
unpredictable outages, less human error, less energy losses, higher transmission
and distribution capacity and promotion of the use of low-cost and renewable
energy resources such as wind turbines and solar panels, while upgrading the
power generation and distribution infrastructures [4].

One of the main substructures of power grid is microgrid, which is a
small-scale power supply network consisting of low-capacity renewable energy
generators, residential electrical consumers (e.g., home appliances), and energy
storage devices [2, 11]. Microgrids are aware of the local energy supply, the
demand profile and can trade energy with other microgrids and connecting
power plants [4]. In the smart grid, microgrids can sell extra energy to
other microgrids to reduce the dependence on the power plant and save the
long-distant energy transmission loss [27].

With time-varying renewable energy production, production of a set of
electrical generators needs to be coordinated to achieve some common target:
to match the energy demand at minimum cost or maximize revenues from
energy production. This coordinated optimization process is called Unit
Commitment (UC) [20]. In an uncertain real world environment, this problem
becomes Stochastic Unit Commitment, which has been studied by various
researchers [8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 25, 26].

In [11], authors take advantage of linear programming to select optimal
system capacities and schedule of operation for the stochastic unit commitment
(SUC) problems in a microgrid. The method is tested in a microgrid with three
consumers and three CHP (Combined Heat and Power), wind and photo-voltaic
energy generators, storages of thermal and electricity, management systems
for communications and energy as well as other components. The proposed
method in [24] uses dynamic programming to solve UC problems when demand
is not certain. Any renewable energy is considered in this paper. Descent
algorithm is used for Stochastic Storage Problems in [17]. No renewable energy
exists in the defined problem, and continuous parameters are discretized to
use by the method. Authors in [15] deploy a multi-agent method to solve
UC problems with several types of agent consisting of a facilitator, generators
and mobile agents. Generator agents and mobile agents negotiate with
each other. Experiments are down in a simple test-bed consisting of three
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controllable generators, a single facilitator and two types of mobile agents.
Deterministic unit commitment problems (DUC) are solved in [18] by solving
subproblems using dynamic programming. To examine the method, several
controllable generators are used. In [14], a multi-agent reinforcement learning
method on the base of Q-learning is used to introduce a method to unfold
dynamic economic emissions dispatch problem. Stochastic Games framework
is considered to show the problem as a sequential decision-making process.
Soltani et.al. in [21] consider the multi-objective problem of unit commitment
in presence of uncontrollable energy sources (i.e. wind and solar power). In
this work, generators failures are not included and the solution focuses on the
cost and emissions minimizing. Demand uncertainty caused by demand-side
response is discussed in [25]. This is a method with focus on the price-elasticity
of power demand.

Logenthiran et.al. in [12] describe a three-step method to find a solution
of thermal unit commitment problems in a microgrid in island mode. It
uses Lagrangian relaxation and genetic algorithm and is tested in a system
consisting of PV (Photo Voltaic) and wind energy, several thermal units and
battery banks. Authors proposed a multi-agent method for the microgrid
in island mode in reference [13]. Agents in several types such as load and
microgrid levels, storage and microgrid managements, coordinator, database
and power world simulator are used in the mentioned paper. The work in [16]
focuses on the SUC problem with variable demand and generators’ outputs.
The problem is investigated as a factored Markov decision process model, and
an approximate algorithm is proposed. This method tries to balance cost of
operation and risk of blackout. Wang et.al. in [26] investigate the UC problem
with the volatile renewable energy of wind considering security of the system.
The problem of wind energy is also under investigated in [19] considering the
failures of the network, generators and transmission lines. Distributed gradient
descent is used to propose a method to solve SUC problem in a distributed
manner in [8]. Renewable energy is considered in this paper.

Almost in all of the above-mentioned researches, the problem is modeled
centrally or the decision-making agents (i.e. generators) share information to
solve the problem [8]. However, for various reasons such as cybernetic attacks
and market competition, information sharing is not feasible in real-world
environments [8]. In addition, the stochastic nature of the problem such as
the demand function fluctuations and the random amount of generated clean
energy has been ignored at the most researches. Generally, what we consider
in this work has not been reported so far.
In this paper, we train controllable generators to learn to meet the demand
profile of the micro-grid in a cooperative manner while satisfying the existing
constraints. We propose a multi-agent reinforcement learning method for
problems with continuous state-action spaces to solve the Stochastic Unit
Commitment in a fully distributed way. Thus, the problem we tackle is
Distributed Stochastic Unit Commitment problem (DSUC). Our contribution
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can be summarized as follows:

• The agents solve the problem without sharing much information and help
provide more security in the power grid: We assume that agents do
not share information of their policies and decisions due to the potential
cyber-attacks aiming at spiteful control of electricity flow.

• The agents learn to satisfy the demand function despite its unpredicted
fluctuations: Unpredictable fluctuations of the demand function is
something that may occur in power grids making the environment
uncertain so that the learning task is more challenging. By learning this
random variation, the grid will not be interrupted by power failure and
thus its reliability will not be reduced.

• The agents learn to comply with clean energy generators: The presence of
uncontrollable clean energy generators influenced by the weather condition
is another source of uncertainty that can be handled by our method.

• The agents learn to satisfy the demand function associated with a time
interval: This is not a one-time solution of UC problem that will be
repeated at time intervals. The agents can be trained to work for several
time periods; for instance a month, a season, or even a year.

• The agents work in the continuous state and action spaces: The generator
production is not necessarily selected from a discrete set. Therefore, this
solution is a continuous time solution and is able to satisfy a continuous
demand function.

• The total performance of the system is based on the received reward from
the environment and the general state of the system. Therefore, unlike
many existing multi-agent learning methods, increasing the number of
agents will not increase the time and space complexity of the proposed
method.

• The proposed algorithm has a theoretical foundation, high learning speed
with a very low error rate in learning.

The remainder of this paper is organized as follows: Section 2 presents
some preliminaries to express the proposed method. Section 3 contains the
proposed multi-agent algorithm to solve DSUC problem. In Section 4, we use
two frameworks to test and explain the results of the experiments.

2 PRELIMINARY CONCEPTS

This section provides a brief overview of the concepts that we need throughout
this paper.
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2.1 Reinforcement Learning

The main idea behind the reinforcement learning is that the rewarded behavior
is likely to be repeated, whereas a behavior, which is punished is less likely to
recur [23]. Thus, an agent learns from the received environmental feedback by
two different signals: state signal indicates the agent state in the environment,
and the reward signal shows feedback of the environment to determine the
desirability of the agent state. The agent tries to maximize its long-term utility.
By Reinforcement Learning (RL) methods, in the state s, an agent takes the
action a, goes to the state s′ and receives the reward r. The agent updates its
state value function V (s) or its state-action value function Q(s, a), showing the
long-term usefulness of the state s or usefulness of the action a in the state s,
respectively. This could be seen in Relations (1) and (2), which is called Bellman
equation [5] where S is the state space, A is the action set and γ (0 ≤ γ < 1) is
the discount factor.

Vπ(s) = Eπ[

∞∑
k=0

(γkRt+k+1)|St = s] (1)

where Eπ[.] and Rt mean of expected value of [.] and received reward in time t.

Qπ(s, a) = Eπ[Gt|St = s,At = a] =

Eπ[

∞∑
k=0

(γkRt+k+1)|St = s,At = a]
(2)

2.2 Multi-Agent Reinforcement Learning (MARL)

A multi-agent system is a loosely coupled network of problem-solving entities
(agents) working together to find answers to problems beyond the individual
capabilities or knowledge of each entity (agent) [22]. Like other intelligent
entities, agents act based on the utility in any state of environment. In the
presence of other agents, uncertainty and a general utility model, a problem
can be modeled as an Multi-agent Markov Decision Process (MMDP) in which
a joint action at any state consists of individual action performed by all the
agents [6]. Let the system be fully observable to each agent, then an MMDP is
defined as a tuple M = 〈β,A, S, P,R〉 where β is a set of m agents, every agent
i ∈ β has a finite set of actions Ai and the joint action space A = A1×· · ·×Am
is made of the elements 〈a1, · · · , am, 〉, ai ∈ Ai. In addition, S is the state space,
P : S×A×S → [0, 1] is the dynamic of the system and R : S → < is a bounded
reward function with a real value.

2.3 Unit Commitment problem

Unit commitment (UC) is an optimization problem used to determine the
operation schedule of the generating units at every hour interval with varying
loads under different constraints and environments [20]. The optimization
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problem tries to find the best solution to satisfy demand load while considering
the grid constraints. Among these constraints are the limited capacity of the
power generators, limited battery capacity and minimizing production cost.
The Stochastic Unit Commitment is a special case of the unit commitment
problem that due to the nature of the random and unpredictable production
of clean and renewable energy generators and also random fluctuations in the
demand profile, uncertainty is introduced to the original problem [8]. The
basis of our model is cooperative multi-agent systems. It should be emphasized
that the grids in our formulation include a combination of renewable energy
resources and PES generators (i.e. agents). Clearly, only the production of
PES generators can be controlled and the amount of the produced clean energy
appears as an uncertainty source, making the learning process more challenging.
In the following, we model the UC and SUC problem according to our modeling.

Definition 2.1 Unit Commitment (UC): A Unit commitment problem is
defined by a tuple (C,N, S,A, L, F ) where C is the number of controllable
generators in the micro-grid, N is the number of time steps in a time period
(for example, one day), S is the joint state space of controllable generators.
In the exact word, S = (S1, S2, ..., SC) which Si is the state space of ith agent
(i.e. controllable generator) and Si(t) ∈ {0, 1} is its status in time step t, A is
the joint action space of the controllable generators where A = (A1, A2, ..., AC)
where Ai is the action space of the ith agent (i.e. each action ai(t) could be a
change in energy production in time step t). L is the set of demanded load values
according to the time steps over a period of time, therefore, L = (l1, l2, ..., lN )
where lt is the demand load in time step t. F is the set of constraints of the
agents and the whole system. Thus, F = ∪i∈CFi ∪ Fs where Fi and Fs are
constraints for the agent i and the whole system (i.e. global constraints).

The goals in an UC problem are: [8]:

• Finding the status of any generator which is either on or off, in any time
step.

• Determining the amount of any generator production in every time step.

• Ensuring that generators, with the determined status and production,
satisfy the demanded load considering minimum cost and the other
constraints.

Definition 2.2 Stochastic Unit Commitment (SUC): A Stochastic Unit
Commitment problem is defined by a tuple (U,C,N, S,A, L, F,E,O) where
C,N, S,A,
L,F are as definition 2.1. U is the number of renewable energy generators and
E is the joint production space of clean energy generators (i.e. uncontrollable
generators). E = (E1, ..., EU ) where Ej is production space of the jth
uncontrollable generator and ej(t) is its production in time step t.
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Due to the presence of fluctuations in the demand function as well as generators’
random production, SUC will be a complicated problem. We consider each
decision-making point in SUC as an intelligent autonomous agent enabling them
to cooperate and solve the problem. We model the problem as a distributed
constraint optimization problem where agents optimize the constraints while
satisfying the demand function. The optimization is carried out via constraint
learning.

2.4 Fuzzy Least Square Policy Iteration

Most of the existing reinforcement learning approaches are proposed for
problems with discrete state and action spaces, while most of the real world
problems have large or continuous state and action spaces. Fuzzy Least Square
Policy Iteration (FLSPI) [10] is among the few methods proposed for the
problems with large or continuous state and action spaces. This method
has acceptable learning speed and accuracy in single-agent environments and
has a theoretical basis. By defining the basis functions using a zero-order
Takagi-Sugeno fuzzy system, FLSPI makes Least Square Policy Iteration (LSPI)
applicable for large and continuous spaces. This is a policy iteration (PI)
based algorithm having two phases: policy evaluation and policy improvement.
FLSPI uses the fuzzy system as an approximator to partition the state space
and define the appropriate membership functions. The fuzzy rules will be
defined based on this partitioning afterward. Consequences of the rules are
made of the combination of the weighted candidate actions. Candidate actions
are selected from the agent’s action space and is used to generate the final
continuous action. In each step of the algorithm, depending on the weight of
the actions and the action selection method, an action is selected from each
rule. The final action will be obtained from the weighted summation of these
selected actions.

To have the formal definition of FLSPI, we assume that the state space is an
m dimensional space in which its ith dimension is partitioned to di parts and l
candidate actions are selected from the agent action space. Now, based on the
problem definition, u rules are defined, which the ith rule is as follows:

If x1 is Li1 and ... and xm is Lim Then

(ok1 with weight wi1 or ... or okl with weight wil)
(3)

where Lij is the ith defined membership function for jth dimension of the state
space. Using the defined fuzzy rules, the basis functions are defined as:

φ(s, a) =

 m︷ ︸︸ ︷
0...µ1(s)...0

m︷ ︸︸ ︷
0...µ2(s)...0 . . .

m︷ ︸︸ ︷
0...µu(s) . . . 0

T (4)

Cardinality of φ(s, a) is equal to u × l. Corresponding to each rule, the firing
strength related to the mentioned state is located at the location of the selected
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candidate action. FLSPI uses the defined updating rules of LSPI.

A=A+φ (s, a)
(
φ (s, a)−γφ

(
s
′
, π
(
s
′
)))T

(5)

b = b+ φ(s, a)r (6)

Matrices A and b are used to update the weight vector, w.

Aw=b (7)

The weight vector is used to update the action-value function to approximate
the optimal policy.

Q̂π=Φw =

R∑
i=1

µi(s)wii+ (8)

where R is number of fuzzy rules.

3 Proposed Method

Micro-grids play an important role in smart grids. A micro-grid is an electrical
system including multiple loads and distributed energy resources that can be
operated in parallel with the broader utility grid or a small, independent power
system.

It increases reliability with distributed generation and efficiency with reduced
transmission length, and it is easier to be integrated with alternative energy
sources [1]. In addition, since micro-grid is a localized distributed network
with sources and loads, it can be managed by distributed intelligent agents. In
a multi-agent system, making the best decision depends on the other agents’
decisions. Therefore, in most of the multi-agent learning methods, agents use
the joint action learning strategy [7]. This needs information sharing that does
not meet the reliability requirements of the smart grid where the exchange of
information puts them at the risk of eavesdropping and cybernetic attacks and
enable energy market speculators to abuse this information. In this paper, we
propose a distributed solution for the SUC problem, based on a reinforcement
learning method called Fuzzy Least Square Policy Iteration (FLSPI). The
high-speed convergence, the existence of mathematical analysis, fewer adjustable
parameters than other RL methods as well as acceptable performance in large
or continuous spaces are among the advantages of this method. Our solution
acts based on the received reward from the environment and is an independent
action learner; therefore, the agents do not share information. To explain more,
each agent approximates the system status based on the demand load, energy
stored in the battery and the reward received at each time step implicitly. Based
on this approximation, it selects the best possible action. We consider the state
space as a three dimensional space: the amount of energy produced by the agent,
demand load and the energy stored in the battery. Increasing or decreasing the
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IA: Intelligent Agent, US: Uncontrollable source

Figure 1: Distributed generation in a micro-grid.

amount of the produced energy makes our action space. Assuming continuous
state and action spaces provides more flexibility to determine the best value for
the amount of energy that each agent must produce. By selecting an action and
applying it, a reward signal will be given to the agent based on the behavior
of the other agents, dynamic of the whole system and the system constraints
(i.e. succeeding in demand satisfaction, minimizing production costs and so
on). According to the joint action of the agents, the state of each agent will
change to a new state including the energy that must be generated in the next
time step, demand load and battery storage. Eventually, the agent learns the
best behavior, allotting to it the highest accumulative reward. Like every RL
modeling, learning is carried out based on the received reward. Therefore,
how to define rewards in the UC problem is highly important. The details
of our reward function are presented in 4.1. In the following, we explain our
method more technically. At first, we partition the state space in all of its
three dimensions and define the appropriate membership functions. As already
mentioned, the first dimension is the range of the energy that the agent produces,
i.e. [0, Emax], where Emax is the maximum power production capacity of the
learning agent. The second dimension is the range of demand fluctuations,
i.e. [0, Dmax], where Dmax is the maximum demand load for a specific time
interval. The third dimension is the battery capacity, i.e. [0, Bmax], where
Bmax is the maximum capacity of the battery (maximum energy that could be
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stored in the battery). Now, using a set of candidate actions, we can define
fuzzy rules. This set is selected from all the possible actions of the agent. We
define the continuous action space as [−Adecmax, A

inc
max], where Adecmax and Aincmax

are the maximum increase and decrease in power production in each time step.
Now, we define the fuzzy rules using the membership functions for the
continuous state space and the weighted candidate actions of the continuous
action space. The number of these rules is equal to f1 × f2 × f3, where fi is
the number of the ith dimension’s partitions. For example, if the state space is
partitioned into three parts in each dimension, the number of fuzzy rules will
be equal to 27. Therefore, by assuming that the number of candidate actions is
equal to a, the rules are defined as follows:

If x1 is Li1 and x2 is Li2 and x3 is Li3 Then

(o1 with weight wj1 or ... or oa with weight wja)
(9)

where 1 ≤ ik ≤ fk, 1 ≤ k ≤ 3 and Lik is the membership function of ik.
In other words, in every state, firing strength of the current state membership
degree is placed in the position j+ of the basis function vector. This is the
position of the selected candidate action in the process of selecting the best
action. Thus, the jth basis function of the state s is as follows:

[0 ... µj(s) ... 0] (10)

where µj(s) is the firing strength of jth rule for state s and is placed in position
j+.
Selecting the best candidate actions of each rule is done based on the candidate
actions’ weights and action selection method (e.g. using an exploration term),
at every time step. This is because, selecting a suitable action for a state should
be based on its state-action value. Based on the FLSPI method, the state-action
values are dependent on the weight vector.

Qπ(s, a) = φ(s, a)
T
w (11)
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Figure 2: Block diagram of proposed method

Therefore, what is needed to obtain the best decision is to find the weight
of the candidate actions based on the desirability of them depending on the
reward received by the agents. This is the policy evaluation phase. In this
phase, a reward signal is given to the agent, based on the system constraint
compliance and demand satisfaction. We will explain this reward in Section 4.1.
Obviously, the reward received from the environment and the agent’s next state
are not only dependent on the agent’s action, but also depend on the actions
performed by all agents in the environment, unpredicted changes in demand
function and random amount of the produced clean energy. Total effect of these
events changes battery storage to a new state and determine the next time
step demand. Only the first part of the agent state (i.e. the amount of the
agent production) is solely dependent on the agent’s action. Figure 2 shows the
associated diagram.

Here, we must calculate the weight of each candidate’s action for each rule
based on the reward received from the final action and the current state of
the agent. Now, the final action should be computed based on the selected
candidate actions with the coefficients of the firing strength related to the
current state. To update the weight vector, matrices A and b are used. These
matrices are updated using Relations (5) and (6), respectively. Then, the
weight vector will be updated in Relation (7). This is the policy improvement
phase.The process continues until the specified condition is met (for example
achieving the goal or after a fixed number of iterations).

If we follow the normal process of the single-agent version of FLSPI, the
next state of the agent is not predictable by just determining the current state
and action. It depends on many other factors; therefore, parameter updating
should be postponed until the environment changes to a new state.
It should be noted that due to the impact of the environment dynamics and
other agents behavior in the agent’s next state (i.e. to update matrix A) and the
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Algorithm 1 Proposed method

Input: p1, p2 and p3 : Number of the partitions for three dimension state space
(generator power, demand and battery), {o1, ..., o1}: candidate action set
(the value of decrease or increase), γ : Discount factor, initial matrices A0,
b0 and w0.

Output: π : policy (w : weight vector), the amount of energy changes in each
time step

1: Observe initial state s0
2: Select a suitable action ojj+ from each rule based on the actions’ weights

and determined action selection strategy
3: Calculate amount of production change

a1(s1) =

u∑
i=1

µi(s1)ojj+ (12)

4: Apply a1, observe s2 and receive reward r1 (based on the all agent actions
and dynamic of system).

5: repeat
6: t← t+ 1
7:

At = At−1 + φ(st−1, at−1)(φ(st−1, at−1)− γφ(st, π(st)))
T

(13)

8:

bt = bt−1 + φ(st−1, at−1)rt−1 (14)

9: Solve
1

t
AtWt =

1

t
bt (15)

10: Select a suitable action ojj+ from each rule based on the actions’ weights
and determined action selection strategy

11: calculate amount of production change

at(st) =

u∑
i=1

µi(st)ojj+ (16)

12: Apply at, observe st+1 (based on the all agent actions) and receive reward
rt.

13: until Adapt condition is met.
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received reward (i.e. to update matrix b), the agent learns how to select its best
action according to the system dynamic. Apparently, the agent approximates
the policy of the others implicitly, and uses this approximation in selecting the
best possible action in the common environment. The algorithm is presented in
Algorithm 1.

3.1 Discussion

The only added complexity by the multi-agent version of FLSPI algorithm in
compare to its single-agent version is the increase in the dimension of the state
space from one to three. Let fi be the partition number of the ith dimension in
the state space. The number of the fuzzy rules is equal to f1 × f2 × f3. If the
number of the selected candidate action is equal to na, then in the single-agent
version, we have |A| = (f1×na)2 and |b| = f1×na. This is while in the proposed
multi-agent version, we have |A| = (f1× f2× f3×na)2 , |b| = f1× f2× f3×na.
It is important to note that the imposed complexity is independent of the
number of the agents and does not increase by the number of agents and remains
unchanged.

4 Experimental Setup

In this section, we first outline the frameworks for the test grids and then provide
the settings and definitions of the parameters and finally present the results
based on the Matlab simulations.

4.1 Test Environment

In this paper, we use two frameworks to test our solution for the DSUC
problem. These frameworks are defined based on the problem complexity in
terms of the number of generators, the uncertainties in the environment and the
system constraints. Controllable generators are considered intelligent agents
where they will be trained to make decision autonomously in a distributed
manner. Renewable energy generators, power storages and demand functions
are other components of these systems. In both frameworks, the state and
action spaces are assumed continuous. Furthermore, the training time steps
could be increased to increase the accuracy of the learned policy in exchange for
time complexity. Therefore, it is necessary to balance the needed accuracy and
time complexity in a determined period of time. This is possible by experiment.

Definition 4.1 Framework 1: Here, we assume that there is a micro grid
with two controllable and one uncontrollable generators. Random production
of clean energy such as wind and solar energy confronts the environment with
uncertainty. In addition, unpredicted demand function fluctuations also add
more uncertainty to the environment. Generators have some limitations such as
the maximum production capacity as well as the amount of increase and decrease
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in energy production at a specified time step. Such constraints are appropriately
defined for any controllable generators. On the contrary, constraints such as
battery capacity and demand satisfaction are subject to the general constraints
defined for all agents. Therefore, the reward will be defined based on the violation
from the production power range for the learning generator, the success of
demand satisfaction, and compliance with the capacity of the battery.

Definition 4.2 Framework 2: In this framework, the number of generators
increases to ten, including seven controllable and three uncontrollable generators.
The uncertainty in the demand function is also considered. Due to the failure
possibility of generators in the real world problem, we also consider this issue
in this framework. It is assumed that some generators may fail, with a random
probability in each time step, and after a random number of time steps, they will
be repaired. In this case, to have a reliable system, the remaining generators
should compensate the lack of the failed generators, with the minimum error of
demand satisfaction as well as with minimum imposed cost. Therefore, to define
the reward signal in this framework, we also consider the production cost defined
as a penalty for agents.

Table 1 show the cost function based on the amount of production (Cost
function), the maximum production power (Maximum power) and the allowed
range of production changes in each time step (Maximum change), for the three
types of generators.

Generators Cost function Maximum
power (kW)

Maximum
change (kW)

generator1 5.13x2− 10.19x+ 29.53 10800 3000
generator2 5x2 − 10x+ 29.72 6300 2000
generator3 4.94x2− 9.92x+ 29.794 5400 1700

Table 1: Generators with different features

4.2 Experimental results

We partitioned each dimension of the continuous three dimensional state space
into three parts and define a triangular membership function (as a simple
and usual membership function) corresponding to each part (same as Figure
3). The upper bound for the first, second and third dimensions of the state
space is equal to the maximum production power of the learning generator,
the maximum storage capacity of the battery and the maximum demand load,
respectively. We use two first generators presented in Table 1 with one clean
energy generator with random production. This amount of energy is modeled
as the absolute value of the normal probability density function as pointed
out in [3, 28] with mean and standard deviation equal to 0kW and 500kW.
Such a generator has a maximum production power that we assume it as twice
the standard deviation of the density function. Random fluctuations of the

14



demand function are also modeled by the normal probability density function
with the mean equal to 0kW and the standard deviation of 600kW. In other
words, it is possible that demand load at any time step be less or more than
the predicted demand by a random value. In this experiment, the maximum
battery capacity is defined equal to 3800kW. This capacity is selected based
on the minimum value with a good performance. The candidate action sets for
the first and second generators are defined as {−3000,−1500, 0, 1500, 30000}
and {−2000,−1000, 0, 1000, 2000}, respectively. These sets are chosen based on
some experiments in which we tried to reduce the complexity. Since quantities
less than 1kW are not noticeable in the power production, we consider the
smallest change equal to 1kW (i.e. using round function). In addition, we set
the discount factor to γ = 0.95 and use ε-greedy action selection method in
all the experiments. ε-greedy is an action selection method that allows the
algorithm to choose a random action with the probability of ε and the action
with the highest weight with the probability of 1− ε.

Figure 3: Triangular membership functions

Figure 4 shows the demand function for the first framework. The definition
of demand function is based on the general form of consumption. Generating
the random values will cause many oscillatory changes in the demand function
and will cover all demand functions in the determined range. Therefore, the
agent learns to satisfy the demand for a specific range (e.g. one year) with only
one trial.
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Figure 4: Demand function for framework 1 with 3 generators

The learning process will end after 30 successful episodes (i.e. demand and
other hard constraint satisfaction) or after 1000 consecutive episodes. The agent
also has an opportunity of 300 episodes in each trial to reach the goal. This
experiment has been performed 50 trials independently. Here, each time period
is divided into 24 time steps. Based on the required accuracy, the length of time
intervals could be decreased to any desirable extent. In each step, the reward
signal is defined with 0.5 + 1

1+error for the case that the generator production
is in the allowed range and 0 otherwise. error is the difference between the
produced energy and the demand load.
After training the agent, the derived policy of each trial is tested on 50 different
demand functions, which their values are within the defined range in the training
phase. Table 2 presents the results of this experiment for the training and test
phases.

Mean episode
to learn

Mean
error 1

Mean
error 2

Mean
error 3

Mean
error 4

64.9 86.383 43.776 12.988 62.695

Table 2: Mean errors for different scenarios in the first framework

We use different values for grid parameters, in order to study their impacts
on the algorithm performance. One can see that in the first test in which
its parameters are similar to the training phase, the demand satisfaction error
(Mean error 1) is very low and is equal to 86,383kW, which is less than 1%,
compared to the maximum possible error (i.e. 9996kW). In an effort to reduce
this error, we used some other ideas. In the second test, we assumed that the
demand function has the standard deviation of 400kW. As it is observed, if
the random variation of the demand function at the learning phase exceeds its
actual value, then the results in the test phase will improve (Mean error 2).
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Figure 5: Different demand functions that agents learned to satisfy for the first
framework.

Then, we assumed that the demand function does not have any unpredictable
fluctuation and the only uncertainty factor is the random production of clean
energy. Despite the existence of clean energy generator (i.e. uncertainty
sources), it is seen that the average error (Mean error 3) is very low and is
close to zero. Finally, we assumed that the parameters of the demand functions
and clean energy were the same as the training phase, but we increased the
battery capacity to 4500kW. As can be seen, the average error (Mean error 4)
has fallen but not to the expected value. Therefore, the main factor of error is
the random changes of the demand function and clean energy. By increasing
the fluctuation domain of the demand function in the learning phase, we can
reduce the error rate at the test phase. In many trials of this test, despite the
existence of uncertainty in the environment, the controllable generators have
learned to satisfy the demand functions without any error. Error is caused
by sudden and severe fluctuations in predicted demand function and produced
clean energy, which is apparent in mean error values. To conclude, the proposed
algorithm has a high degree of flexibility in learning a range of different functions
in the stochastic and non-deterministic domains, and the results demonstrate
the efficiency of the method. For a better understanding, Figure 5 presents
the results of satisfaction of three different demand functions at different time
intervals. It should be noted that these functions are just examples of the
numerous demand functions that the agents are able to satisfy without any or
with a very small error after just one training trial.
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As shown, these three functions (Figures 5a, 5b and 5c) have different peak
hours and their fluctuations are also different. In these diagrams, the production
rate of all three generators along with the amount of battery consumption is
shown. At some hours, some extra energy is generated, which is stored in the
battery and can be consumed later when the generators are not able to exactly
satisfy the demand. This helps the agent to implicitly approximate the others
agents’ policies when unpredicted changes exist in the demand function and the
clean energy production.
Now, we explain the results in the second framework. In this framework,
seven controllable and three uncontrollable generators are used. Controllable
generators are selected from Table 1: Three generators of type 1, two generators
of type 2 and two generators of type 3. Three uncontrollable generators are set
to work with the normal probability distribution function with the standard
deviation of 500kW, 600kW and 700 kW. For the demand function, we use the
normal probability distribution function with the standard deviation of 700kW.
For all normal distributions, we set the mean to zero. According to the definition
given at the beginning of this section, what distinguishes the second framework
from the first framework is as follows:

• The increased number of controllable generators as intelligent agents,
making the problem more difficult to solve, particularly without
information sharing,

• The increased number of uncontrollable clean energy generators imposing
more uncertainty on the environment,

• The increased range of the demand function fluctuation, increasing the
uncertainty,

• The possibility of generators failure and their outage from the energy
production process,

• The demand satisfaction with the optimal cost

Figure 6: Demand function for framework 2 with 10 generators
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Figure 6 shows the basic demand function for the second framework. This
is more difficult to learn than the demand function of the first framework in
Figure 4. However, in general, due to the unpredicted fluctuations, the demand
functions in the learning and test phases are more complex than what shown in
Figure 6.
Table 3 presents the results for this experiment. The used parameters are
as before. The average number of the needed episodes for learning (each
episode is equal to one day) is equal to 55.08, indicating that the learning
speed is high. The average error derived from the test, with parameters as the
training parameters, is slightly lower than the average of the maximum possible
error (i.e. 34747kW) in demand satisfaction, which is 0.36%. Decreasing
the standard deviation parameter for demand fluctuations to 500kW improves
the test results. By eliminating the fluctuations of the demand function, the
environment uncertainty factors are limited to the random values of the clean
energy produced by the three uncontrollable generators. This further reduces
the mean error of the demand satisfaction (equal to 0.005%, which can be
considered almost zero). Increasing the capacity of the battery to 13500kW,
while the parameters of random functions related to demand fluctuations and
clean energy remain as the training phase, increases the average error to demand
satisfaction, which is not desirable. Again, it can be concluded that decreasing
the uncertainty in the environment results in decreasing the error of the demand
satisfaction.
In this framework, the agents also learn to satisfy a defined range of different
demand functions cooperatively, just with one training trial and without
information sharing in parallel. Figures 7a, 7b and 7c present an example
containing three different functions, which are satisfied by only one learning
trial.

Mean episode
to learn

Mean
error 1

Mean
error 2

Mean
error 3

Mean
error 4

55.08 125.016 105.648 84.028 139.002

Table 3: Mean errors for different scenarios in the second framework

Despite the fact that the complexity of the problem is increased, the agents
are able to satisfy the different demand functions in the distributed manner
and without information sharing. Diagrams are based on the controllable
generators’ production, produced clean energy and battery consumption. As
mentioned earlier, when the total production is more than the demand load,
surplus energy is stored in the battery until it is picked up when needed.

Using the proposed method, the agents are able to satisfy the demand
function, in spite of failure of some generators. This is based on the condition
that the amount of demand is not more than the sum of the generating capacity
of the generators in the process of producing energy. Figure 8 show two examples
of offsetting the unpredicted failures of some generators by others. In Figure
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Figure 7: Different demand functions that agent learned to satisfy in the second
framework.

Figure 8: Demand Satisfaction with generators’ failure.
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8a, the sixth generator (i.e. maximum production power of 5400kW) has failed
for 14 time steps (i.e. 14 hours) from time step 8 to 22. This is also true for
Figure 8b with the failure of the second generator (i.e. maximum production
power of 6300kW) for 15 time steps from time step 5 to 20. In Figure 8c, both
failures occurred simultaneously.

The agents will satisfy the demand function based on the total amount of
energy produced by the whole system, as long as all generators are working.
Nevertheless, when some of the generators suddenly fail, the rest of them
compensate for the energy shortfall, and as soon as they return, all agents return
to the pre-failure status. Therefore, there is no shortage in demand satisfaction,
and the failure of generators will not affect the total energy production and will
not be evident for the consumers. This is an example of the self-healing feature
of the smart grid.
The other feature of the proposed algorithm is the ability to demand satisfaction
with the optimal total cost production. The total cost functions for Figure 8
are shown in Figure 9. To compensate the decrease in the generated energy by
the failure of generators, other generators try to satisfy the demand with the
lowest imposed cost. In this experiment, we have eliminated the impact of the
clean energy production to accurately compare the imposed costs by controllable
generators. It should be noted that, to minimize the imposed costs while trying
to minimize the error of the demand satisfaction, two goals are defined for the
learning process. Thus, this is a multi-objective optimization problem and the
reward should be defined in such a way that both of goals can be achieved
simultaneously. In this case, we have used summation of the normalized reward
for the demand satisfaction and normalized reward associated with the total
imposed cost.

Figure 9: Cost comparison of demand satisfaction with generators’ failure

It can be seen that in time steps 1 to 4 where all generators have the
ability to generate energy, the total cost of the energy generation is the same
in all three charts. In time steps 5 to 8 where the sixth generation fails,
the second chart (i.e. failure of the second generator) continue to match the
initial diagram, but the other two graphs incorporating the failure of the sixth
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Figure 10: Learned policy by the proposed method in Reference [14] for 3
generators

generator will equally and slightly increase the cost. In time steps 8 to 20,
while both the second and sixth generators fail, the increase in costs for the
diagram of the simultaneous failure of two generators is clearly lower than
the summation of the imposed costs by two single failures of the generators.
Therefore, it is seen that the proposed method attempts to have the lowest cost
for these failures. Even in some time steps such as 12 and 18, this increase will
almost disappear and approaches to zero. Therefore, in such cases, despite the
absence of two generators, no extra cost has been imposed. This is due to the
presence of the battery in the environment. In other words, due to the fact that
in time steps with one or two generator failure, the amount of consumption
and storage differs from the presence of all generators. This is the reason for
the mismatch in the demand satisfaction pattern in the return period of both
generators at the end of a time period (i.e. a day).
We also compared our method to one of the latest proposed methods presented
in [14]. Cardinality of the action space is defined equal to 101, imposing
considerable complexity while creating a large gap between the actions
selectable for generators with high generation. In addition, the maximum
allowed episodes in each trial to be defined as 20,000 episodes, showing the
low learning speed of this algorithm in comparison to our proposed method
having a mean learning speed of less than 65 episodes. This is while, our
method considers two types of uncertainty in the environment. In addition,
our results are based on the different demand function types generated with
a random term, and the result of the mentioned method is based on a fixed
demand function. Thus, the proposed method in [14] training the agent for a
fixed demand function, while our method simultaneously does this for a range
of different demand functions.

With the same setting of framework 1, the method in [14] could not learn to
satisfy the demand function in any trials. The demand satisfaction mean errors
are high error and unacceptable for example Mean error 1 is equal to 2585kW.
Figure 10b shows two samples of the learned policies.
The method in [14] could not learn to satisfy defined violated demand function
of framework 2, at all (even using a high capacity battery). The mean errors in
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Figure 11: Learned policy by the proposed method in Reference [14] for 10
generators

the test phase are high. For instance mean error 1 is equal to 8373kW (for G(+)
as the best result and with battery maximum capacity of 12000kW) which is
large and inappropriate error for satisfying the demand function. One can see
the samples of the extracted policy by this method in Figure 12.
On the other hand, corresponding production cost to the learned policy is not

suitable as it is shown in Figure 12

Figure 12: A sample cost function extracted from learned policy by proposed
method in Reference [14]

5 CONCLUSION

In this paper, a multi-agent learning algorithm is proposed for the optimization
problem of Distributed Stochastic Unit Commitment. The agents learn to
satisfy the demand profile with minimum cost while considering the constraints.
This algorithm uses reinforcement learning to learn a cooperative behavior
in the continuous state-action spaces and do not share information. It is a
reward-based multi-agent solution using special reward signal and state of the
agent to approximate the system behavior implicitly, despite the presence of
uncertainty in the environment. If the number of steps at time interval is
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increased, the proposed algorithm could be used as a continuous time solution.
The ability of learning a large number of demand functions in a desired
range is another advantage of this method. In other words, with one trial
of this algorithm, the agents could satisfy the different demand functions for
a time interval (including one season or even one year) with the possibility
of unpredicted fluctuations in the demand function, in a non-deterministic
environment. The experiments in two different frameworks show the acceptable
performance of this method in the DSUC problem.
We are going to develop the proposed solution for more complex stochastic unit
commitment problems with more objective functions such as minimizing carbon
emission. In addition, we will consider microgrids with more uncontrollable
energy resources rather than controllable types and also plug-in electric vehicles
as a type of energy storage.
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