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ABSTRACT 
 
In this paper we present (1) a method for semantic search 
supported by ontological concept learning; and (2) a 
prototype multiagent system that can handle semantic search 
and encapsulate the complexity of such process from the 
users. Agents which conduct semantic search on behalf of a 
user, deploy ontologies to organize structured and 
unstructured documents in their corresponding repositories. 
The ontology for each repository is individualized and 
commitment to a common ontology is not required.  The 
agents can improve their search capability by learning new 
concepts from each other. This method thus allows agents 
dynamically establish common grounds on concepts known 
only to some of them. The concept learning is realized by 
analyzing positive and negative examples from other agents, 
and/or taking votes in case of conflicts in the received 
knowledge by involving other agents again.  
 
Index Terms — multi-agent system, semantic search, 
ontology, concept learning, semantic interoperability. 
 

1. INTRODUCTION 
 

In contrast with the traditional keyword search 
technology which purely depends on the occurrence of 
words in documents, semantic search denotes one or more 
concepts in the context of other concepts. Understanding the 
denotation of concepts can help retrieval part of search 
engine understand the context of search, the activity the 
users is trying to perform, thus drive expectations on the 
categories of documents [6]. The essence of semantic search 
is semantic interoperation towards denotation part in the 
search phrase. Nowadays, general denotation procedures are 
realized depending on ontology-oriented means, and 
ontologies adopted are usually evolved and maintained in a 
distributed way. Thus, multiplicity of ontologies raises the 
issue of integration and renders the communication between 
peers involved in a semantic search ineffective.  

 Establishment of a common ontology for a certain 
domain is one of the cornerstone among cooperative agents 
(peers) participating in semantic search. However, agreeing 
on a common ontology may not be realistic. In multi-agent 
systems (MAS) research concerning agents’ 
communication, having a common ontology is only possible 
when the design rationale, the concepts and meanings 
assigned to the concepts as well as the context of applying 
the concepts are shared. In other words, the agents must be 
designed in such a way that all the domain concepts and 
their meaning (i.e. semantics) should be provided in 
advance. In heterogeneous MAS, for a single domain, 
usually there is no agreement on the ontology among 
developers, and for several domains, the potential 
ontologies are large, unwieldy and may lead to less 
resolution and higher abstraction. 

Recently, the idea of having agents learn concepts from 
each other has been suggested as a solution to improve 
agent communication. For example, the work in [8] suggests 
a method for learning a language and the work in [9] has 
focused on interactions between two agents to learn a single 
concept. In our previous work, we have presented a method 
for agents to learn concepts from several peer agents [1-2] 
and a method for verification of the learnt concepts [5].  
    Euzenat in [4] defines semantic interoperability as the 
faculty of interpreting the annotations at the semantic level, 
i.e. to ascribe each imported piece of knowledge to the 
correct interpretation or set of models. Possible levels of 
interoperability needed to be considered when trying to 
understand an expression from other systems are in 
ascending order of semantic intensity: 
• encoding: being able to segment the representation in 

characters; 
• lexical: being able to segment the representation in 

words (or symbols); 
• syntactic: being able to structure the representation in 

structured sentences (or formulas or assertions); 
• semantic: being able to construct the propositional 

meaning of the representation; 
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• semiotic: being able to construct the pragmatic meaning 
of the representation (or its meaning in context). 
This model resembles humans’ natural communication 

style that each semantic level can be achieved only if the 
lower ones have been traversed. For example, people can 
exchange useful information only if they have chosen a 
language, and clarified meanings of concepts which are 
critical to the topic. The idea of layered semantic 
interoperability has already been applied to the WWW [3] 
and is directly applied in our architecture of layered 
semantic search.  

In this paper we present a method and a system that uses 
the ontology learning in a multi-layer semantic search. The 
architecture and learning supported search mechanism will 
be explained through the prototype system in Sections 2 and 
3. The implementation details are provided in Section 4 
followed by an example in Section 5 and conclusions in 
Section 6. 

  
2. LAYERED SEMANTIC SEARCH 

ARCHITECTURE 
 
Based on the semantic interoperability model [4], we 

have devised the layered semantic search architecture as 
illustrated in Figure 1. In this model peers can communicate 
and conduct search at various levels. This layered 
architecture will reduce complexity by breaking complex 
semantic interoperability into smaller problems; it 
standardizes interfaces between adjacent layers; it facilitates 
modular engineering and development of search tools; and 

it accelerates evolution of technology.  
 

The model puts some constraints on the communication 
between peers, namely: 
1. One layer only talks with its peer layer on remote side 

under some agreements (or protocols). These 

agreements help both sides to settle natural languages, 
encoding standards for exchanging information, 
representation grammar of search phrase, etc. 

2. A search phrase can be optionally initiated at any layer, 
then will be passed down, layer by layer, to the bottom 
layer (encoding layer). Each layer will add 
corresponding annotation information to the search 
phrase. Packaged phrase, finally, will be sent out. 

3. Each layer can work relying on the ontology located on 
the same layer of semantics. 

Definitions of functionalities of layers of semantic 
interoperability are given below. 

The encoding layer, as base layer, defines encoding 
format of data exchange, thus implicitly defines the 
character sets of a natural language for exchanging a search 
phrase. ASCII and Unicode are mainly used as encoding 
formats. The lexical layer tokenizes the search phrase. At 
this layer, important identifiers of ontology components are 
identified. Functionality of this layer is not easily realizable 
for some natural languages such as Chinese because 
tokenization of sentences is a big issue due to the lack of 
explicit delimiter, except for punctuation, to separate each 
single word (or symbol). The syntactical layer identifies 
concepts by structuring words following grammar at query 
side, and it is capable of understanding the structured 
representation to extract concepts at responding side. The 
semantic layer provides ability to understand propositional 
meaning of the representation of search phrase. The 
semiotic layer provides ability to understand meaning of 
the representation of search phrase in a context (specific 
domain). The objective of this paper is to design and 
implement a prototype semantic search system to study 
annotation-learning workflow with focus on the lexical 
layer. 
 

 3. SYSTEM ANALYSIS AND DESIGN 
 
The overview of prototype system for annotation-learning 
workflow within lexical layer is shown in Figure 2. In this 
system, software agents form a cooperative group to learn 
and search concepts. Each agent is responsible for a local 
unstructured data repository with a local ontology. The 
agents are responsible for organizing documents in their 
own repositories using any ontology they deem appropriate. 
The agents also communicate with each other to respond to 
search queries.  

The system design assumptions, following the FIPA 
guidelines (http://www.fipa.org) are: 
a) MAS is a close cooperative group. It means that there 

is, at least, one agent taking charge of registering 
service. Any other agent joining the group needs to 
register by offering its necessary information such 
service type and access point.  

b) There is, at least, one agent that provides yellow page 
service to enable agents find each other. 

Semiotic

Semantic

Syntactic

Lexical

Encoding

Semiotic

Semantic

Syntactic

Lexical

Encoding

Communication Channels 

Figure 1. Architecture of layered semantic search

Peer1 Peer2

124



 
Figure 2.  System overview 

GAIA design methodology [10] is used to design the 
MAS. Each individual agent currently holds 4 roles: 
Document Annotator, Concept Learner, Register Handler, 
and Concept Manager. IBM’s UIMA [7] is used to enable 
dynamical annotation of documents, and, therefore, enable 
classification of documents within their own repository. In a 
later phase, we will utilize an addition Peer Finder role to 
create an open cooperative MAS that enables agents 
automatically find each other. Details of the annotator and 
learner roles are explained below. 
 
3.1. Document Annotator 
Regular search usually is capable of finding tokens without 
any relationship between them. The tokens are not able to 
reflect domain-specific properties similar to atoms in early 
chemistry which are unable to retain chemical properties of 
a complex chemical substance.  

The documents annotator in this project is aiming at 
annotating “molecules”, special combinations of tokens, on 
which some well-defined constraints are applied. Creating 
such type of annotation, especially dynamically creating 
annotations is a fundamental role, not only for concept 
learning, but also for semantic search involving newly learnt 
concept. As the following formula describes, 

Annotation = Fconstraints(token1, token2, …). 
Constraints can be, for example, window size, appearing 
order within certain window size of text, etc. The annotation 
process is depicted in Figure 3. The methods used in the 
annotation process are: 
 
CreateConceptHierarchy( [concept], keyword1, 
keyword2, …, CH1) 
Annotator first creates a Concept Hierarchy (CH) using 
received series of keywords. This CH directly goes into the 
Annotation Engine (AE) to tell what is needed to be 
searched from the document repository. 
 
CreateAnnotationEngine (Type1, AE1) 
This method takes CH as a parameter to dynamically build 
Annotation Engine (AE) which is the algorithm’s container. 

DoAnnotation(Annotator1, Doc1, Doc2, …) 
Once annotation engine is created, it will be run against 
repository to annotate and grab satisfying documents. 
 
ReplyQuery(Annotated Documents, PositiveExamples, 
NegtiveExamples) 
This method takes charge of replying to query. In this 
project, it also implements some specific filtering work such 
as selection of positive examples and creation of negative 
examples (see Section 3.2 for details).  
 

 
3.2. Concept Learner 
An agent knowing a concept is equivalent to having a 
defined classifier for that concept. The classifier is a binary 
function which decides whether a new incoming document 
belongs to (or explains) the concept. The Concept Learner 
role is used to generate this classifier.  

We adopt a feature-based representation model to 
represent concepts. That is, each concept is composed of a 
set of features or keywords which are regarded as the best 
representation of this concept. For each concept, there exists 
a set of documents whose major topic belongs to this 
concept. Those documents are called positive objects for 
this concept. The list of features can be generated from the 
positive objects using a simple statistics method [11]. The 
similarity between a pair of concepts is defined as: 
Sc1,c2: Similarity between concept c1 and concept c2 
Nc1∩c2: Number of documents that belong to both 

concept c1 and concept c2 (with relevance 
degree greater that a defined threshold) 

Nc1Uc2: Number of documents that belong to either 
concept c1 or concept c2. 

Based on this definition for each concept set we have an 
ontology matrix as shown in Figure 4. The values in this 
matrix denote the similarity value between pairs of 
concepts. For example, the similarity value between c1 and 
c2 is 0.8, and there is no relationship between concept c1 and 
c3 since the similarity value between them is zero. 

Annotator: 

Concept Hierarchy: 
  Concept1 (f1, f2,…) 
 ... 

(concept1,…,  keyword1,  
keyword2,…) 

Figure 3. Process of Documents Annotation 

1. Create annotation 
type system 

3. Do annotation 
upon documents 

4. Reply query with 
annotated documents 

AE1: 
Pre-defined processing 
logics 

2. Create 
Annotation Engine. 
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 c1 c2 c3 
c1 1 0.8 0 
c2 0.8 1 0 
c3 0 0 1 

 
Figure 4. Ontology Matrix 

 
The learner is based on the training set available. For 

each concept, we select a set of positive objects (documents 
in this case) belonging to the concept and a corresponding 
set of negative objects using the ontology matrix. For 
example, if we want to create a classifier for concept c1, we 
choose positive examples from the documents assigned to 
concept c1. For negative examples, we choose documents 
which belong to concept c3 because those documents do not 
represent concept c1. This mechanism may not always lead 
to an optimum learning and we have investigated other 
algorithms [2]. Finally, using the positive and negative 
examples, we adopt a data mining algorithm to train and get 
the classifier for concept c1.  
 
3.2.1. Concept Learning Process 
We illustrate the learning process using the following 
actions (see Figure 5). 
 

 
 

Figure 5: Concept Learning Process 
 
QueryConcept (“keyword1”, “keyword2”, …) 
The learner agent will start the concept learning by issuing 
action QueryConcept which will send the query to other 
agents. The parameters it takes are a list of keywords 
representing features of a potential concept. 
 
SelectBestConcept (“keyword1”, “keyword2”, …) 
On the receiver side, the agent first uses keywords to build 
annotator dynamically which then is used to annotate the 
candidate documents.  
 
SelectPosEx(concept) 
After getting the best concept and candidate documents 
associated to this concept, the receiver agent will select a 
given number of positive examples from the candidate 
documents. 
CreateNegEx (concept) 

The receiver agent also performs this action to produce a 
given number of negative examples for the concept based 
on the ontology matrix. 
 
ReplyQuery(pi, ni) 
The receiver agent i sends back the positive (pi) and 
negative (ni) examples to the learner agent. 
 
Learn ((p1,n1), (p2,n2), …) 
The learner agent will take all the documents transferred 
from the teacher agents as the training documents to form a 
new concept. We have examined various data mining 
algorithms such as Naïve Bayes and SVM. If there are any 
conflicting documents, they are dismissed. It means only 
documents which are agreed by all the agents are regarded 
as the documents under the new concept. 
 
Integrate (concept) 
With the new concept from the method Learn, the learner 
agent will assign a temporary name to it and suggests it to 
the administrator of the learner system. The administrator 
can approve the concept, assigns a meaningful name to it 
and add it to the local repository. 
 

4. IMPLEMENTATION 

4.1 System Architecture 
Figure 6 shows the prototype system. Document Annotator 
is developed using IBM’s UIMA (Unstructured Information 
Management Architecture) [7]. IDE Eclipse Europa is 
selected because it supports UIMA and Apache Tomcat 
http://www.eclipse.org/europa/) which is used to deploy 
document annotation service in this project. UIMA is 
featured by type system in which the data has a type and a 
set of attribute, value pairs [7], so that it is conceptually 
identical to concept from our point of view.  
 
4.2. Document Annotator 
The components to fulfill actions CreateConceptHierarchy, 
CreateAnnotationEngine, DoAnnotation, and ReplyQuery 
need to be built to form a complete Annotator. Central task 
is to deal with creation of type system. 
 
4.2.1. Creation of Type System    
According to type system definition specification [7], the 
first step is to build XML-based type system descriptor. 
Figure 7 shows an actual descriptor from the project. This is 
an aggregate type system which is composed of several 
basic primitive types. The lines enclosed by an oval 
represent one type definition which includes name, 
description, super-type name, and its features. UIMA 
provides APIs to build class components to dynamically 
adjust contents of descriptors and create a corresponding 
Java class. 
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4.2.2. Creation of Annotation Engine (AE) 
Developer of an annotator has to implement a standard 
interface having several methods, such as initialize(), 
process() and destroy() to embed processing logic into it.  

There are two ways for creator to tell process() method 
which types need to take and which types need to produce. 
One is manually creating a component descriptor which is 
XML-based document, like type system descriptor; another 
is using APIs that come along with UIMA to dynamically 
set this component descriptor. The latter is preferable 
because developer can select input/output type system at 
run-time. Immediately after the Annotation Engine is 
created, the process() will take over to scan documents and 
produce types as specified in AE descriptor.  
 

 
Figure 7. A Type System Descriptor 

 

4.3. Concept Learner 
The Concept Learner role is responsible for implementing 
action Learn which takes training documents as input, and 
produces concept classifier. 
 
4.4. Concept Manager 
Concept Manager role helps agent to manage set of 
concepts coming from three sources: newly learnt through 
training, selected by experts of specific domain, and newly 
learnt through semantic search. It need implement actions: 
SaveConcept, RetrieveConcept. 
 

5. ILLUSTRATIVE EXAMPLE 
 
To illustrate semantic search-learning process, here we 
provide a simple but illustrative example. In this scenario, 
three existing repositories of documents concentrating on 
software testing (Rtest), object-oriented analysis and design 
(Roo), and agent-based software engineering (Ragent) are 
created. Agent-based software engineering (Ragent) is 
considered as the local repository. 

In the local repository there are several documents: some 
of them are about MAS methodology; some about other 
concepts. The initial status, as shown in Figure 8, tells that 
all documents, having not been annotated, are organized in 
flat structure.  
 

 
 

Figure 8. Snapshot of Initial Repository 
 

Based on current status, a regular query, as shown in 
Figure 9, is initiated. In this case, a user wants to know 
“what the token Prometheus means in software 
engineering”. Processing this query with no semantic search 
(as depicted by empty “Concepts” box in Figure 9) will 
return two documents, with completely different contents. 
The document 03 is talking about Prometheus MAS design 
methodology; meanwhile, the document 11 is about Greek 
mythology which is apparently not the one that user 
intended to receive. 

To disambiguate search results, the agents will take the 
following steps to kick off a semantic search: 
1. A concept learning routine is started to evaluate returned 

documents, through which new concepts, for example, 
“agent” (including its features) is identified; it then will 
be propagated within the group (see [11] for details). 

Customer 

 
 
 
 
 

Control  

Document 
Annotator 

Concept 
Manager 

Concept 
Learner 

Register 
Handler 

Docs 
Rep. 

Concept 
Rep. 

Yellow 
Pages 

GUI 

Figure 6. Architecture of Prototype System 
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2. Each agent, upon receiving this concept, will annotate its 
own repository. Annotation procedure re-categorizes 
repository by conforming to concept hierarchy. Figure 
10 shows changes happened to repository R-agent. 

3. New concepts will be added to the concept repository in 
order to support decoding query phrase, or searching.  
 

 
 

Figure 9. Illustration of Regular Search Procedure 
 

 
 

Figure 10. Snapshot of Annotated Repository 
 

 
 

Figure 11. Illustration of Semantic Search Procedure 
 

Once these steps are completed, a next round of search 
will start by involving the newly learnt concepts. Figure 11 
shows a disambiguated result by sending query phrase 
consisting of both keywords and concepts. 

From the procedure explained above, we can conclude 
that dynamical annotation guided by concept hierarchy is 

capable of categorizing the repository, consequently, 
making retrieval of documents more efficient.  

 
6. CONCLUSION AND FUTURE WORK 

 
In this paper we presented a method and a prototype MAS 
for semantic search-learning. This method is based on the 
architecture of layered semantic interoperability. The central 
procedure is composed of dynamical document annotation 
and concept learning mechanisms to solve the problem of 
semantic heterogeneity in distributed information 
management with minimum overhead and no need to 
commit to a common ontology. From the implementation, 
we can conclude that the semantic search supported by 
concept learning is a generative evolutional procedure. It is 
started by a regular search leading to learning a new 
concept. Then later the learnt concept is used in semantic 
search, and the search resolution will improve.  

Future work includes implementation of the role 
PeerFinder which will lead to an open MAS. Also, research 
efforts will be put on organizing concepts into a hierarchy 
through learning. Finally, based on research achievements, 
we will propose a protocol for search on other layers of the 
semantic interoperability model. 
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