
ONTOLOGY-LEARNING SUPPORTED SEMANTIC SEARCH
USING COOPERATIVE AGENTS

Cheng Zhong1 Zilan (Nancy) Yang1 Mohsen Afsharchi2 Behrouz H. Far1

1 Department of Electrical and Computer

Engineering, Schulich School of Engineering,
University of Calgary, Canada

{czhong, zyan, far}@ucalgary.ca

2Department of Electrical and Computer
Engineering, University of Zanjan, Iran

afsharchim@iasbs.ac.ir

ABSTRACT

In this paper we present (1) a method for semantic search
supported by ontological concept learning; and (2) a
prototype multiagent system that can handle semantic search
and encapsulate the complexity of such process from the
users. Agents which conduct semantic search on behalf of a
user, deploy ontologies to organize structured and
unstructured documents in their corresponding repositories.
The ontology for each repository is individualized and
commitment to a common ontology is not required. The
agents can improve their search capability by learning new
concepts from each other. This method thus allows agents
dynamically establish common grounds on concepts known
only to some of them. The concept learning is realized by
analyzing positive and negative examples from other agents,
and/or taking votes in case of conflicts in the received
knowledge by involving other agents again.

Index Terms — multi-agent system, semantic search,
ontology, concept learning, semantic interoperability.

1. INTRODUCTION

In contrast with the traditional keyword search
technology which purely depends on the occurrence of
words in documents, semantic search denotes one or more
concepts in the context of other concepts. Understanding the
denotation of concepts can help retrieval part of search
engine understand the context of search, the activity the
users is trying to perform, thus drive expectations on the
categories of documents [6]. The essence of semantic search
is semantic interoperation towards denotation part in the
search phrase. Nowadays, general denotation procedures are
realized depending on ontology-oriented means, and
ontologies adopted are usually evolved and maintained in a
distributed way. Thus, multiplicity of ontologies raises the
issue of integration and renders the communication between
peers involved in a semantic search ineffective.

 Establishment of a common ontology for a certain
domain is one of the cornerstone among cooperative agents
(peers) participating in semantic search. However, agreeing
on a common ontology may not be realistic. In multi-agent
systems (MAS) research concerning agents’
communication, having a common ontology is only possible
when the design rationale, the concepts and meanings
assigned to the concepts as well as the context of applying
the concepts are shared. In other words, the agents must be
designed in such a way that all the domain concepts and
their meaning (i.e. semantics) should be provided in
advance. In heterogeneous MAS, for a single domain,
usually there is no agreement on the ontology among
developers, and for several domains, the potential
ontologies are large, unwieldy and may lead to less
resolution and higher abstraction.

Recently, the idea of having agents learn concepts from
each other has been suggested as a solution to improve
agent communication. For example, the work in [8] suggests
a method for learning a language and the work in [9] has
focused on interactions between two agents to learn a single
concept. In our previous work, we have presented a method
for agents to learn concepts from several peer agents [1-2]
and a method for verification of the learnt concepts [5].
 Euzenat in [4] defines semantic interoperability as the
faculty of interpreting the annotations at the semantic level,
i.e. to ascribe each imported piece of knowledge to the
correct interpretation or set of models. Possible levels of
interoperability needed to be considered when trying to
understand an expression from other systems are in
ascending order of semantic intensity:
• encoding: being able to segment the representation in

characters;
• lexical: being able to segment the representation in

words (or symbols);
• syntactic: being able to structure the representation in

structured sentences (or formulas or assertions);
• semantic: being able to construct the propositional

meaning of the representation;

123

• semiotic: being able to construct the pragmatic meaning
of the representation (or its meaning in context).
This model resembles humans’ natural communication

style that each semantic level can be achieved only if the
lower ones have been traversed. For example, people can
exchange useful information only if they have chosen a
language, and clarified meanings of concepts which are
critical to the topic. The idea of layered semantic
interoperability has already been applied to the WWW [3]
and is directly applied in our architecture of layered
semantic search.

In this paper we present a method and a system that uses
the ontology learning in a multi-layer semantic search. The
architecture and learning supported search mechanism will
be explained through the prototype system in Sections 2 and
3. The implementation details are provided in Section 4
followed by an example in Section 5 and conclusions in
Section 6.

2. LAYERED SEMANTIC SEARCH

ARCHITECTURE

Based on the semantic interoperability model [4], we

have devised the layered semantic search architecture as
illustrated in Figure 1. In this model peers can communicate
and conduct search at various levels. This layered
architecture will reduce complexity by breaking complex
semantic interoperability into smaller problems; it
standardizes interfaces between adjacent layers; it facilitates
modular engineering and development of search tools; and

it accelerates evolution of technology.

The model puts some constraints on the communication
between peers, namely:
1. One layer only talks with its peer layer on remote side

under some agreements (or protocols). These

agreements help both sides to settle natural languages,
encoding standards for exchanging information,
representation grammar of search phrase, etc.

2. A search phrase can be optionally initiated at any layer,
then will be passed down, layer by layer, to the bottom
layer (encoding layer). Each layer will add
corresponding annotation information to the search
phrase. Packaged phrase, finally, will be sent out.

3. Each layer can work relying on the ontology located on
the same layer of semantics.

Definitions of functionalities of layers of semantic
interoperability are given below.

The encoding layer, as base layer, defines encoding
format of data exchange, thus implicitly defines the
character sets of a natural language for exchanging a search
phrase. ASCII and Unicode are mainly used as encoding
formats. The lexical layer tokenizes the search phrase. At
this layer, important identifiers of ontology components are
identified. Functionality of this layer is not easily realizable
for some natural languages such as Chinese because
tokenization of sentences is a big issue due to the lack of
explicit delimiter, except for punctuation, to separate each
single word (or symbol). The syntactical layer identifies
concepts by structuring words following grammar at query
side, and it is capable of understanding the structured
representation to extract concepts at responding side. The
semantic layer provides ability to understand propositional
meaning of the representation of search phrase. The
semiotic layer provides ability to understand meaning of
the representation of search phrase in a context (specific
domain). The objective of this paper is to design and
implement a prototype semantic search system to study
annotation-learning workflow with focus on the lexical
layer.

 3. SYSTEM ANALYSIS AND DESIGN

The overview of prototype system for annotation-learning
workflow within lexical layer is shown in Figure 2. In this
system, software agents form a cooperative group to learn
and search concepts. Each agent is responsible for a local
unstructured data repository with a local ontology. The
agents are responsible for organizing documents in their
own repositories using any ontology they deem appropriate.
The agents also communicate with each other to respond to
search queries.

The system design assumptions, following the FIPA
guidelines (http://www.fipa.org) are:
a) MAS is a close cooperative group. It means that there

is, at least, one agent taking charge of registering
service. Any other agent joining the group needs to
register by offering its necessary information such
service type and access point.

b) There is, at least, one agent that provides yellow page
service to enable agents find each other.

Semiotic

Semantic

Syntactic

Lexical

Encoding

Semiotic

Semantic

Syntactic

Lexical

Encoding

Communication Channels

Figure 1. Architecture of layered semantic search

Peer1 Peer2

124

Figure 2. System overview

GAIA design methodology [10] is used to design the
MAS. Each individual agent currently holds 4 roles:
Document Annotator, Concept Learner, Register Handler,
and Concept Manager. IBM’s UIMA [7] is used to enable
dynamical annotation of documents, and, therefore, enable
classification of documents within their own repository. In a
later phase, we will utilize an addition Peer Finder role to
create an open cooperative MAS that enables agents
automatically find each other. Details of the annotator and
learner roles are explained below.

3.1. Document Annotator
Regular search usually is capable of finding tokens without
any relationship between them. The tokens are not able to
reflect domain-specific properties similar to atoms in early
chemistry which are unable to retain chemical properties of
a complex chemical substance.

The documents annotator in this project is aiming at
annotating “molecules”, special combinations of tokens, on
which some well-defined constraints are applied. Creating
such type of annotation, especially dynamically creating
annotations is a fundamental role, not only for concept
learning, but also for semantic search involving newly learnt
concept. As the following formula describes,

Annotation = Fconstraints(token1, token2, …).
Constraints can be, for example, window size, appearing
order within certain window size of text, etc. The annotation
process is depicted in Figure 3. The methods used in the
annotation process are:

CreateConceptHierarchy([concept], keyword1,
keyword2, …, CH1)
Annotator first creates a Concept Hierarchy (CH) using
received series of keywords. This CH directly goes into the
Annotation Engine (AE) to tell what is needed to be
searched from the document repository.

CreateAnnotationEngine (Type1, AE1)
This method takes CH as a parameter to dynamically build
Annotation Engine (AE) which is the algorithm’s container.

DoAnnotation(Annotator1, Doc1, Doc2, …)
Once annotation engine is created, it will be run against
repository to annotate and grab satisfying documents.

ReplyQuery(Annotated Documents, PositiveExamples,
NegtiveExamples)
This method takes charge of replying to query. In this
project, it also implements some specific filtering work such
as selection of positive examples and creation of negative
examples (see Section 3.2 for details).

3.2. Concept Learner
An agent knowing a concept is equivalent to having a
defined classifier for that concept. The classifier is a binary
function which decides whether a new incoming document
belongs to (or explains) the concept. The Concept Learner
role is used to generate this classifier.

We adopt a feature-based representation model to
represent concepts. That is, each concept is composed of a
set of features or keywords which are regarded as the best
representation of this concept. For each concept, there exists
a set of documents whose major topic belongs to this
concept. Those documents are called positive objects for
this concept. The list of features can be generated from the
positive objects using a simple statistics method [11]. The
similarity between a pair of concepts is defined as:
Sc1,c2: Similarity between concept c1 and concept c2
Nc1∩c2: Number of documents that belong to both

concept c1 and concept c2 (with relevance
degree greater that a defined threshold)

Nc1Uc2: Number of documents that belong to either
concept c1 or concept c2.

Based on this definition for each concept set we have an
ontology matrix as shown in Figure 4. The values in this
matrix denote the similarity value between pairs of
concepts. For example, the similarity value between c1 and
c2 is 0.8, and there is no relationship between concept c1 and
c3 since the similarity value between them is zero.

Annotator:

Concept Hierarchy:
 Concept1 (f1, f2,…)
 ...

(concept1,…, keyword1,
keyword2,…)

Figure 3. Process of Documents Annotation

1. Create annotation
type system

3. Do annotation
upon documents

4. Reply query with
annotated documents

AE1:
Pre-defined processing
logics

2. Create
Annotation Engine.

125

 c1 c2 c3
c1 1 0.8 0
c2 0.8 1 0
c3 0 0 1

Figure 4. Ontology Matrix

The learner is based on the training set available. For

each concept, we select a set of positive objects (documents
in this case) belonging to the concept and a corresponding
set of negative objects using the ontology matrix. For
example, if we want to create a classifier for concept c1, we
choose positive examples from the documents assigned to
concept c1. For negative examples, we choose documents
which belong to concept c3 because those documents do not
represent concept c1. This mechanism may not always lead
to an optimum learning and we have investigated other
algorithms [2]. Finally, using the positive and negative
examples, we adopt a data mining algorithm to train and get
the classifier for concept c1.

3.2.1. Concept Learning Process
We illustrate the learning process using the following
actions (see Figure 5).

Figure 5: Concept Learning Process

QueryConcept (“keyword1”, “keyword2”, …)
The learner agent will start the concept learning by issuing
action QueryConcept which will send the query to other
agents. The parameters it takes are a list of keywords
representing features of a potential concept.

SelectBestConcept (“keyword1”, “keyword2”, …)
On the receiver side, the agent first uses keywords to build
annotator dynamically which then is used to annotate the
candidate documents.

SelectPosEx(concept)
After getting the best concept and candidate documents
associated to this concept, the receiver agent will select a
given number of positive examples from the candidate
documents.
CreateNegEx (concept)

The receiver agent also performs this action to produce a
given number of negative examples for the concept based
on the ontology matrix.

ReplyQuery(pi, ni)
The receiver agent i sends back the positive (pi) and
negative (ni) examples to the learner agent.

Learn ((p1,n1), (p2,n2), …)
The learner agent will take all the documents transferred
from the teacher agents as the training documents to form a
new concept. We have examined various data mining
algorithms such as Naïve Bayes and SVM. If there are any
conflicting documents, they are dismissed. It means only
documents which are agreed by all the agents are regarded
as the documents under the new concept.

Integrate (concept)
With the new concept from the method Learn, the learner
agent will assign a temporary name to it and suggests it to
the administrator of the learner system. The administrator
can approve the concept, assigns a meaningful name to it
and add it to the local repository.

4. IMPLEMENTATION

4.1 System Architecture
Figure 6 shows the prototype system. Document Annotator
is developed using IBM’s UIMA (Unstructured Information
Management Architecture) [7]. IDE Eclipse Europa is
selected because it supports UIMA and Apache Tomcat
http://www.eclipse.org/europa/) which is used to deploy
document annotation service in this project. UIMA is
featured by type system in which the data has a type and a
set of attribute, value pairs [7], so that it is conceptually
identical to concept from our point of view.

4.2. Document Annotator
The components to fulfill actions CreateConceptHierarchy,
CreateAnnotationEngine, DoAnnotation, and ReplyQuery
need to be built to form a complete Annotator. Central task
is to deal with creation of type system.

4.2.1. Creation of Type System
According to type system definition specification [7], the
first step is to build XML-based type system descriptor.
Figure 7 shows an actual descriptor from the project. This is
an aggregate type system which is composed of several
basic primitive types. The lines enclosed by an oval
represent one type definition which includes name,
description, super-type name, and its features. UIMA
provides APIs to build class components to dynamically
adjust contents of descriptors and create a corresponding
Java class.

126

4.2.2. Creation of Annotation Engine (AE)
Developer of an annotator has to implement a standard
interface having several methods, such as initialize(),
process() and destroy() to embed processing logic into it.

There are two ways for creator to tell process() method
which types need to take and which types need to produce.
One is manually creating a component descriptor which is
XML-based document, like type system descriptor; another
is using APIs that come along with UIMA to dynamically
set this component descriptor. The latter is preferable
because developer can select input/output type system at
run-time. Immediately after the Annotation Engine is
created, the process() will take over to scan documents and
produce types as specified in AE descriptor.

Figure 7. A Type System Descriptor

4.3. Concept Learner
The Concept Learner role is responsible for implementing
action Learn which takes training documents as input, and
produces concept classifier.

4.4. Concept Manager
Concept Manager role helps agent to manage set of
concepts coming from three sources: newly learnt through
training, selected by experts of specific domain, and newly
learnt through semantic search. It need implement actions:
SaveConcept, RetrieveConcept.

5. ILLUSTRATIVE EXAMPLE

To illustrate semantic search-learning process, here we
provide a simple but illustrative example. In this scenario,
three existing repositories of documents concentrating on
software testing (Rtest), object-oriented analysis and design
(Roo), and agent-based software engineering (Ragent) are
created. Agent-based software engineering (Ragent) is
considered as the local repository.

In the local repository there are several documents: some
of them are about MAS methodology; some about other
concepts. The initial status, as shown in Figure 8, tells that
all documents, having not been annotated, are organized in
flat structure.

Figure 8. Snapshot of Initial Repository

Based on current status, a regular query, as shown in
Figure 9, is initiated. In this case, a user wants to know
“what the token Prometheus means in software
engineering”. Processing this query with no semantic search
(as depicted by empty “Concepts” box in Figure 9) will
return two documents, with completely different contents.
The document 03 is talking about Prometheus MAS design
methodology; meanwhile, the document 11 is about Greek
mythology which is apparently not the one that user
intended to receive.

To disambiguate search results, the agents will take the
following steps to kick off a semantic search:
1. A concept learning routine is started to evaluate returned

documents, through which new concepts, for example,
“agent” (including its features) is identified; it then will
be propagated within the group (see [11] for details).

Customer

Control

Document
Annotator

Concept
Manager

Concept
Learner

Register
Handler

Docs
Rep.

Concept
Rep.

Yellow
Pages

GUI

Figure 6. Architecture of Prototype System

127

2. Each agent, upon receiving this concept, will annotate its
own repository. Annotation procedure re-categorizes
repository by conforming to concept hierarchy. Figure
10 shows changes happened to repository R-agent.

3. New concepts will be added to the concept repository in
order to support decoding query phrase, or searching.

Figure 9. Illustration of Regular Search Procedure

Figure 10. Snapshot of Annotated Repository

Figure 11. Illustration of Semantic Search Procedure

Once these steps are completed, a next round of search
will start by involving the newly learnt concepts. Figure 11
shows a disambiguated result by sending query phrase
consisting of both keywords and concepts.

From the procedure explained above, we can conclude
that dynamical annotation guided by concept hierarchy is

capable of categorizing the repository, consequently,
making retrieval of documents more efficient.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a method and a prototype MAS
for semantic search-learning. This method is based on the
architecture of layered semantic interoperability. The central
procedure is composed of dynamical document annotation
and concept learning mechanisms to solve the problem of
semantic heterogeneity in distributed information
management with minimum overhead and no need to
commit to a common ontology. From the implementation,
we can conclude that the semantic search supported by
concept learning is a generative evolutional procedure. It is
started by a regular search leading to learning a new
concept. Then later the learnt concept is used in semantic
search, and the search resolution will improve.

Future work includes implementation of the role
PeerFinder which will lead to an open MAS. Also, research
efforts will be put on organizing concepts into a hierarchy
through learning. Finally, based on research achievements,
we will propose a protocol for search on other layers of the
semantic interoperability model.

7. REFERENCES

[1] M. Afsharchi, B.H. Far, J. Denzinger, “Ontology Guided

Learning to Improve Communication among Groups of
Agents,” Proc. AAMAS’06, pp. 923-930, 2006.

[2] M. Afsharchi, B.H. Far, and J. Denzinger, Learning Non-
Unanimous Ontology Concepts to Communicate with Groups
of Agents, Proc. IAT’06, IEEE Press, pp. 211-217, 2006.

[3] S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein,
J. Broekstra, M. Erdmann, I. Horrocks, “Semantic Web: The
Roles of XML and RDF”, IEEE Internet Computing, 2000.

[4] J. Euzenat, “Towards a principled approach to semantic
interoperability,” A. Gomez-Perez et al (eds.) IJCAI’2001
Workshop on Ontologies and Info Sharing, Seattle, 2001.

[5] B.H. Far, A.H. Elamy, N. Houari and M. Afsharchi,
“Adjudicator: A Statistical Approach for Learning Ontology
Concepts from Peer Agents,” Proc. SEKE’07, 2007.

[6] R. Guha, R. McCool, E. Miller, “Using the semantic web:
Semantic search,” Proceedings of the WWW’03, 2003.

[7] IBM, “Unstructured Information Management Architecture
(UIMA)”, http://domino.research.ibm.com/comm/research_
projects.nsf/pages/uima.index.html, 2007.

[8] K.C. Jim, C.L. Giles, “Talking Helps: Evolving
Communicating Agents for the Predator-Prey Pursuit
Problem,” Artificial Life 6(3), 2000, pp. 237–254.

[9] A.B. Williams, “Learning to Share Meaning in a Multi Agent
System, Autonomous Agents and Multi Agent Systems 8(2),”
pp. 165–193, 2004.

[10] N. Wooldridge, and D. Kinny, “The GAIA methodology for
Agent-Oriented Analysis and Design,” 2000.

[11] Y. Zilan, C. Zhong, B.H. Far, “A Practical Ontology-Based
Concept Learning in MAS,” Proc. IEEE CCECE’08, (to
appear), 2008.

128

