
A Modularity Maximization Algorithm for Community Detection in Social
Networks with Low Time Complexity

Mohsen Arab
Department of Computer Science

IASBS
Zanjan, Iran

Email: m arab@iasbs.ac.ir

Mohsen Afsharchi
Department of Computer Engineering

University of Zanjan
Zanjan, Iran

Email: afsharchim@znu.ac.ir

Abstract—Graph vertices are often divided into groups
or communities with dense connections within communities
and sparse connections between communities. Community
detection has recently attracted considerable attention in the
field of data mining and social network analysis. Existing
community detection methods require too much space and
are very time consuming for moderate-to-large networks,
whereas large-scale networks have become ubiquitous in real
world. We proposed a method that can find communities
of a graph with good time and space complexity and good
accuracy as well.

I. INTRODUCTION

In recent years, community detection has been in the
center of attention due to its wide use in data mining,
information retrieval and social network analysis. Most of
the complex networks usually have modular or community
structure and appear as a combination of groups that
are fairly independent of each other.Vertices of the same
community usually share some common behaviors. For
instance people of the same community usually have a
set of common properties such as having similar hobbies,
working on a research with the same topic and so on. Thus,
finding communities enables us not only to extract useful
information of complex networks but also to understand
how different groups or communities in a network evolve.

The issue of community detection closely corresponds
to the idea of graph partitioning in computer science
and graph theory, and hierarchical clustering in sociology.
Recently, the computer revolution has provided scholars
with a huge amount of data and computational resources to
process and analyze these data. The size of real networks
one can potentially handle has also grown considerably,
reaching millions or even billions of vertices. The need
to deal with such a large number of units has produced a
deep change in the way that graphs are approached [8]

Since moderate-to-large networks are becoming ubiqui-
tous in our real world, current methods are not satisfactory
from the time complexity point of view. In this paper, we
present an effective algorithm for finding communities of
the graph with a good time and space complexity and also
with an acceptable quality of output which is comparable
with the existing outputs of recent community detection
algorithms. We follow a bottom up approach in which we
start community detection by considering every vertex or
two vertices as preliminary communities. Then based on

a well known criterion which is called ”modularity”, we
merge these preliminary communities. Merging is stopped
when the maximum modularity achieved.

The structure of the paper is as follows: In the next
Section we present a review of the literature. In Section
III we provide a detail discussion of our work which is
followed by complexity analysis of our work. Finally in
Section V we present the result of our experiments. In this
paper, We denote the number of the vertices of a graph as
n and the number of the edges of the graph as m .

II. RELATED WORKS

The most well-known algorithm for community de-
tection was proposed by Girvan and Newman[1]. This
method is historically important due to the opening a new
era in the field of community detection. This method uses
a new similarity measure called edge betweenness. Edge
betweenness is referred to the number of shortest paths
between all vertex pairs that run along that edge. The
algorithm has a complexity O(n3) on a sparse graph.
In the following we will refer to it as GN. In another
work [10] Newman reformulated modularity in terms
of eigenvectors of a new characteristic matrix for the
network and called it modularity matrix. He obtained a
time complexity O(n2logn) for sparse graphs(denoted as
Neig).

Clauset et.al. [2] have proposed a fast greedy modularity
optimization method. Starting from a set of isolated nodes,
the links of the original graph are iteratively added such to
produce the maximum possible increase in the modularity
of [12] at each step. The algorithm has a complexity of
O(nlog2n) on sparse graphs.In the following we will refer
to it as CNM.

A novel divisive algorithm for modularity maximization
is presented by Duch et.al [11]. The total cost of their
algorithm is O(n2log2n). In the following we will refer
to it as EO.

Another modularity optimization has been presented by
Blondel et.al. [3]. This is a multi-step technique based
on the local optimization of Newman-Girvan modularity
in the neighborhood of each node. The computational
complexity is essentially linear in the number of links of
the graph.

With the spirit of Girvan and Newman, Radicchi et.
al. have presented another algorithm [14]. In fact, it is

a divisive hierarchical method where links are iteratively
removed based on the value of their edge clustering
coefficient. The algorithm is O(n2) on a sparse graph.

Cfinder is a local algorithm proposed by Palla et.
al. [7] that looks for communities that may overlap.
The complexity of this procedure can be high as the
computational time needed to find all k-cliques of a graph
is an exponentially growing function of the graph size.

Markov Cluster Algorithm is an algorithm developed by
S.Van Dongen [4], which simulates a peculiar diffusion
process on the graph. The algorithm is O(nk2) where
k < n. The structural algorithm is presented by Rosvall
and Bergstrom [16]. Here the problem of finding the best
cluster structure of a graph is turned into the problem of
optimally compressing the information on the structure of
the graph, so that one can recover as closely as possible
the original structure when the compressed information is
decoded.

Donetti and Munoz presented spectral algorithm[5].
The idea is that eigenvector components corresponding
to nodes in the same community should have similar
values, if communities are well identified. The algorithm
is O(n3).

Expectation-maximization is another algorithm by New-
man and Leicht [6]. Here Bayesian inference is used to
deduce the best fit of a given model to the data represented
by the actual graph structure. The complexity is parameter
dependent.

III. OUR WORK

Our idea for community detection is generally based
on finding small communities (i.e. sub-communities) and
then merging them in order to obtain real communities of
a graph. Like communities, subcommunities are vertices
with dense relationship in which most or all of their
neighbors are in common.

In this approach, for each subcommunity ci we try to
find a neighbor subcommunity cj so that merging them
will result in increasing the modularity value. If there
exist several such neighbor subcommunities, we prefer to
choose the one with maximum increase in modularity. As
we will discuss later, modularity is one globally accepted
criterion for measuring the quality of dividing a graph into
communities.

Merging subcommunities must be repeated several
times. Although merging all pairs of neighbor commu-
nities with highest increase in modularity (i.e. pairwise
merging) is a good idea but it is too slow. Merging multiple
communities together is more quick but it is less accurate.
Therefore, we use both of them and call it ”Hybrid”
merging. We also use a vertex similarity measure to find
small communities which we denote them as preliminary
communities and then apply the modularity maximization
strategy on these preliminary communities that will result
in community detection with higher modularity value.

In this paper, subcommunity means small community
and these two terms may be used alternatively. Also if it
is not specially mentioned, m is the number of the edges
of the graph and n is the number of the vertices

A. Modularity Optimization

In this section, we are going to go more depth in the
concept of modularity and rewrite it with more details.
This enables us to know that merging which two subcom-
munities will result in increasing the value of modularity.

Basically we need a function to evaluate the goodness
of partitioning of a graph into clusters. A well accepted
criterion is modularity which has the unique privilege
of being at the same time a global criterion to define a
community, a quality function and the key ingredient of
the most popular method of graph clustering. This criterion
which is introduced by Newman and Girvan [12] formally
defined as follows:

Q =
∑
i

eii − a2i (1)

where eii is the fraction of edges that connects two nodes
inside the community i and ai represent the fraction of
edges that connect two vertices in community i(i.e. having
one or both vertices inside the community i). The sum
extends to all communities i in a given network. The
larger the Q is, the corresponding partition would be more
accurate.

In the other words, eii is the real fraction of edges
within a community i. With disregarding the underlying
structure, the expected value of the fraction of links within
a community can be estimated. a2i is simply the probability
that an edge begins at a vertex in community i, multiplied
by the fraction of edges that end at a vertex in community
i. So, the expected number of intra-community edges is
just aiai. We can compute these two values directly and
sum over all the communities in the graph [15].

We define Ei as the number of the internal edges of the
community i and also e as the number of the edges of the
graph, so we have:

eii =
Ei

e
(2)

The term ai can be thought as the sum of degrees of
vertices belonging to the community ci divided by the sum
of the degrees of all vertices of the graph. So considering
dv as the number of the neighbors of vertex v (or degree
of vertex v) in graph G, we could write:

ai =

∑
v∈ci

dv∑
v∈G dv

(3)

Obviously in this formula and for undirected graphs,
internal edges are counted twice, and if we denote the
number of all external edges connecting to community ci
as Exti then ai can be written as follows:

ai =
2Ei + Exti

2e
(4)

Now let’s consider a graph with a set of some subcom-
munities including two subcommunities ci and cj and the
same graph with the same set of subcommunities except
with subcommunity cm which is formed by merging ci and
cj . Also assume that Q1 is the modularity value for the
former case and Q2 is the modularity value for the latter
one. We are going to compute the difference between these

two modularity values (∆Q) in order to define which pair
of communities, if we merge, would result in increasing
the modularity value. Suppose that for community cr we
have: Qcr = err − a2r . Hence, Q =

∑
r Qcr . Due to the

fact that the number of internal edges and also external
edges for the rest subcommunities is unchanged, we could
write:

∆Q = Qcm − (Qci +Qcj) (5)

and in more details:

∆Q = emm − a2m − (eii − a2i + ejj − a2j) (6)

It is obvious that the number of internal edges of the
resulted community cm from merging two communities
ci and cj is:

Em = Ei + Ej + Eij (7)

where Eij is the number of the edges between two
communities ci and cj . So, using equation 2 we have:

emm = eii + ejj +
Eij

e
(8)

If we rewrite Exti and Extj according to Eij , we have:

Exti = Eij + α,Extj = Eij + β (9)

where α and β are the number of external edges of
communities ci and cj respectively which are the external
edges of cm as well. Thus

Extm = α+ β (10)

and using equations 4, 7 and 10 and 9 , we could derive:

am =
2Ei + 2Ej + Exti + Extj

2e
(11)

or
am = ai + aj . (12)

Finally, using equations 6, 8 and 12 we have:

∆Q = eii + ejj +
Eij

e
− (ai +aj)

2− (eii−a2i + ejj−a2j)

(13)
which could be summarized to:

∆Q =
Eij

e
− 2aiaj (14)

and using equation 4,

∆Q =
Eij

e
− 2

2Ei + Exti
2e

2Ej + Extj
2e

. (15)

Thus ∆Q has been rewritten according to the terms of two
communities ci and cj , i.e Ei, Ej , Eij , Exti and Extj .

Equation 14 is a very interesting result. It means that
after merging two communities ci and ci, ∆Q will be
the real fraction of the edges connecting two communities
minus the expected fraction of edges between these two
communities.

Back to the modularity maximizing algorithm for find-
ing communities and using equation 15, we want to know
which two communities must be merged in order to have
a maximum increase in modularity value. Suppose that we
start our algorithm with considering all single vertices as

a community. As we know, a community ci with only one
vertex, have not any internal edge which means Ei =0.
Besides, for a simple graph two vertex can be connected
with only one edge for two communities ci and cj which
means Eij =1. Moreover, for a single-member community
ci having only one vertex i, the number of external edges
for this community(i.e. Exti) equals with the degree of
the vertex i. Using di to denote the degree of the vertex
i, ∆Q in equation 15 for this situation can be written as

∆Q =
1

e
− 2

di
2e

dj
2e

(16)

Therefore, starting with single vertices as subcommu-
nities, the lower the degree of two neighbor vertices, the
higher their corresponding ∆Q after merging. Thus this
approach will cluster neighbor vertices with low degree
into the same community, while they may not exist strong
relationship between them. In Section V we will show that
this will result in poor community detection. It is a good
idea to cluster neighbor vertices with strong relationship
into the small communities (i.e. preliminary communities)
at first. Then these preliminary communities will be used
as starting points for the modularity maximization ap-
proach. In the following section, we describe a similarity
measure between two vertices which is used to find the
strength of relationship between two vertices. The vertices
with higher degree of similarity make the preliminary
communities.

B. Similarity Measure

It is a very normal assumption that communities are
groups of vertices similar to each other. One of the most
common vertex similarity measures is called structural
similarity in which, vertex similarity is measured only
based on the structure of a network. Two vertices are
structurally similar if they share some common neighbors,
even if they are not adjacent themselves. Vertices with
large degrees and different neighbors are considered very
far from each other.

In a very naive way the number of the common friends
of vertices i and j could be considered as the measure of
structural similarity

Snaive(i, j) = |Ni ∩Nj | (17)

where Ni and Nj are the sets of the neighbors of ver-
tices i and j respectively. Alternatively, one sophisticated
and normalized vertex similarity which is called cosine
similarity is defined as the following:

Scosine(i, j) =
|Ni ∩Nj |√
|Ni||Nj |

(18)

C. Weighting

We are going to find cosine weight for all edges as
the similarity measure between its vertices. After that,
we cluster each vertex v and one of its neighbor vertices
having maximum cosine weight into the same community.
As a result, we will have some subcommunities with

clustered vertices based on their similarity values to be
used later in the our modularity maximization algorithm.

1 foreach vertex v do
2 foreach neighbor u of v do
3 Cfriends=0;
4 foreach neighbor z of u do
5 if z and v are neighbor then
6 ++Cfriends;
7 end
8 end
9 /* compute cosine weight for edge(u,v) */

10 end
11 end

Algorithm 1: Simple Algorithm (for edge weighting)

To find the number of common friends for all pairs
of vertices of the edges, there is a simple algorithm
(Algorithm 1). In this algorithm, for every vertex v and
for every neighbor vertex u of v (i.e for each edge(u, v)),
first, the number of common friends between vertices u
and v is counted and then cosine weight is assigned to that
edge. Using the adjacency matrix data structure, checking
neighboring of vertices z and v (line 5) can be done in
O(1) time and thus finding the number of common friends
between vertices u and v of an edge(u, v) can be done in
O(du) time where du is the number of neighbors of vertex
u(line 3-8). After that, we can compute cosine weight of
edge(u, v). Because each vertex u has du neighbor edges,
finding the weight of all neighbor edges of vertex u, has
the time complexity of O(d2u).

Therefore, time complexity of this simple method to
find the number of common friends for all pairs of vertices
of the edges of the graph will be:

∑n
v=1 d

2
v . We can find

different examples of graphs, even sparse graphs, that this
time complexity can simply reach O(n2). For instance in
a case of having some vertices with high degrees such as
n/k (a fraction of n), the time complexity will be O(n2).
The space complexity for this algorithm, will be O(n2)
too. Since checking neighbors of vertices z and v (line
5) costs dv time, using adjacency list increases the total
time complexity of finding common friends. We show that
we can change this simple method to have a lower upper
bound for the total time complexity, specially for sparse
graphs and at the same time we can have the advantage
of using adjacency list with space complexity O(m).

Again, To obtain the number of common friends be-
tween v and one of its neighbor vertices (i.e. u), we must
just count the neighbors of v that are neighbor to u as
well. After that, we compute weight of edge (u, v) and
mark it as ”weighted”. We call this process extension,
and we say that vertex v has been ”extended”. If we
constrain ourselves to not extend each vertex more than
once and to find only the weight of an unweighted edge
with each extension, we will have these results: First, the
time complexity for extension in the worst case would be∑n

v=1 dv = O(m), when each vertex is extended exactly
once. Second the maximum number of weighted edges
will be n and that is because the number of weighted
edges equals with the number of extensions. This approach

is presented in Algorithm 2 which is called extension
algorithm. Extension algorithm is the modified version
of simple algorithm (Algorithm 1) with considering two
mentioned constraints as two conditions in line 3 of
algorithm 2 .

1 foreach vertex v do
2 foreach neighbor u of v do
3 if u is ”unextended” And edge(u, v) is

”unweighted” then
4 Cfriends=0;
5 foreach neighbor z of u do
6 if z and v are neighbor then
7 ++Cfriends;
8 end
9 end

10 /* compute cosine weight for edge(u,v) */
11 /* mark vertex u as ”extended” */
12 /* mark edge (u, v) as ”weighted” */
13 end
14 end
15 end

Algorithm 2: Extension Algorithm

Figure 1. (a) shows a sample graph with 11 vertices (n=11). (b) and
(c) are an attempt to find the weights of all neighbor edges of vertices 1
and 4 respectively. First run of extension algorithm has been illustrated
in (d).

So, if each vertex is extended once, the corresponding
time complexity will be

∑n
u=1 du = O(m). Therefore,

time complexity of extension algorithm is

O(m) (19)

To clarify how extension algorithm works, we run this
algorithm on a sample graph which is presented in Figure
1.a. At first run, all edges are considered as ”unweighted”
and all vertices are considered as ”unextended”. If we
consider natural order of vertices, the first vertex of the
graph will be vertex 1. So, we make an attempt to find the
weight of all of its neighbor edges. Since all of its neighbor
vertices are ”unextended” and all of its neighbor edges
are ”unweighted”, all of its neighbor vertices become
”extended” and therefore we can find the weight of all of
its neighbor edges. The result has been illustrated in Figure
1.b. The weighted edges have been specified with red lines
and the extended vertices have been determined with red
circles. Second vertex is vertex 2. One of neighbor vertex
of vertex 2 is vertex 5 which has already been extended
. So, vertex 5 can not be extended and the weight of

edge (2, 5) can not be found. The other neighbor vertex of
vertex 2 is vertex 1. As we already have the weight of edge
(1, 2), there is no need to extend vertex 1. Third vertex
is vertex 3. Since all of its neighbor vertices have been
extended before, we do nothing. Fourth vertex is vertex
4. There are three neighbor vertices of vertex 4: vertices
1, 3 and 7. We already have the weight of edge(4, 1),
So there is no need to extend vertex 1. Since vertices 3
and 7 are ”unextended” and edges (4, 3) and (4, 7) are
”unweighted”, both of them will be extended and will
be marked as ”weighted” (Figure 1.c). We continue this
approach for the rest of the vertices (See Figure 1.d).

As it has been mentioned, in extension algorithm, the
number of weighted edges will not be greater than n.
Thus, this algorithm must be repeated several times in
order to find the weight of the rest of unweighted edges
(See Algorithm 3).

1 Consider all edges as ”unweighted”;
2 k=1;
3 while k <= R do
4 Consider all vertices as ”unextended” ;
5 Extension Algorithm();
6 ++k;
7 end

Algorithm 3: Weighting Algorithm

Since weighting algorithm (Algorithm 3) has R it-
erations and each iteration has time complexity O(m)
(cost of extension algorithm), total time complexity of the
proposed weighting algorithm will be

O(R.m) (20)

An important question that needs to be answered is how
many iterations our proposed weighting algorithm needs
to find the weights of all edges of the graph? In other
words, what would be the best value for R?

Suppose that D is the average degree of the graph. If
all vertices of the graph have equal degree D we need
maximum D iterations to find for each vertex, the weight
of all of its neighbor edges. Consequently, in this situation,
we need D iterations to find the weight of all edges of the
graph. In reality, the degree of each vertex of the graph
in average, not exactly, equals to D. So we expect that in
average we find the weights of all edges in maximum dDe
iterations. As a result dDe would be a good fixed value
for R. If we set R to D the weighting algorithm will
be an approximate algorithm. the results showed that the

Network n %weighted
Karate 34 100%
Jazz 198 99.9%
Metabolic 453 99.6 %
Email 1133 99.9%
Key Signing 10680 82.1%
Physicists 27519 95.9 %

Table I
THE RESULT OF WEIGHTING ALGORITHM, IF R=dDe.

rate of weighted edges found by this weighting algorithm
is generally high (see Table I). It is of importance to
note that the goal of the proposed weighting algorithm,
as we will see later, will not be finding the weight of
all edge of the graph. As the weighting algorithm will
only be used in preliminary community detection stage
and in real graphs which are sparse, D is very small and
sometimes even lower than log(n), so we can set R to
log(n). In this situation, for each vertex the algorithm can
find the weight of at least log(n) of its neighbor edges.
However, as the rate of weighted edges gets higher, we
would have more accurate preliminaries and as the result,
the output of the community detection algorithm will have
better modularity value.

Next step is reducing space complexity of the algorithm
using adjacency list and without increasing the time com-
plexity. Although we could have better space complexity
O(m) using adjacency list, checking neighboring vertices
z (vertex z is neighbor vertex of u) and v (line 6 of
extension algorithm) could not be possible with O(1) time
and this increases the total time complexity again. To avoid
that, we use labeling technique. That is, in each iteration
and for every vertex v, we assign all of its neighbor vertex
u, a label v. Then, to find the number of common friends
between v and each neighbor u of v, it is just enough to
count all u’s neighbors which have label v.(See Algorithm
4)

1 foreach vertex v do
2 foreach neighbor u of v do
3 assign label v to u
4 end
5 foreach neighbor u of v do
6 if u is ”unextended” And edge(u, v) is

”unweighted” then
7 Cfriends=0;
8 foreach neighbor z of u do
9 if z has label v then

10 ++Cfriends;
11 end
12 end
13 /* compute cosine weight for edge(u,v) */
14 /* mark vertex u as ”extended” */
15 /* mark edge (u, v) as ”weighted” */
16 end
17 end
18 end

Algorithm 4: Revised Extension Algorithm. We used la-
beling technique in order to reduce the space complexity
without increasing the time complexity.

Using labeling technique, checking neighboring vertices
z and v can be done in O(1) time, even with adjacency
list. Thus, to know whether vertices z and v are neighbors
or not, it is enough to check if the label of vertex z equals
to v or not (line 9). The cost of extension of the vertices
in revised extension algorithm is the same as extension
algorithm (i.e. O(m)). But we have labeling cost. A label
will be assigned to every neighbor vertices of each vertex
u in du times. So, the time complexity of labeling will
be

∑n
u=1 du = O(m). Thus, the total time complexity of

revised extension algorithm is O(2m) or

O(m) (21)

We need to set all vertices as ”unlabeled” before revised
extension algorithm runs. Revised weighting algorithm
(Algorith 5) is our final weighting algorithm with time
complexity O(R.m).

1 mark all edges as ”unweighted”;
2 k=1;
3 while k <= R do
4 mark all vertices as ”unextended” ;
5 mark all vertices as ”unlabeled” ;
6 Revised Extension Algorithm();
7 ++k;
8 end

Algorithm 5: Revised Weighting Algorithm.

D. Preliminary Community Detection

After weighting edges, we are going to find prelimi-
nary communities (i.e. subcommunities). We first put all
weighted edges of the graph in an array and then sort them
based on their weight in descending order. At first, all
vertices are considered unassigned. Then the edges in the
array are picked one by one and for each edge an attempt
is made to assign its vertices to a new community, if both
of them were unassigned. That means, if we have an edge
(u, v) that both of u and v have not already been assigned
to a community, we create a new community and assign
both vertices u and v to it . If at least one of them were
already assigned to a community,we do nothing. Thus
we will have some subcommunities which have only two
vertices. We consider the rest of the unassigned vertices
as single member subcommunities. As a result and after
running the preliminary community detection algorithm,
graph will be divided into small communities which have
only one or two vertices. In the two-members communi-
ties, vertices are assigned according to their similarity and
we hope that they can be used as a more appropriate and
reasonable preliminary subcommunities in our proposed
modularity maximization algorithm. As an example the
result of this stage on Karate graph is illustrated in Figure
3.

The space needed for this stage is an array with the size
of the number of the edges of the graph(i.e. m). Required
space for preliminary community detection is O(m).

Running time of this stage is mainly concerned with the
sorting of the weighted edges. Time complexity for sorting
an array is O(nlogn) using merge sort. The maximum
number of weighted edges is m and therefore, running
time of this stage is: O(mlogm).

E. Merging Communities

Having found preliminary communities, we are going
to merge communities with the objective of having better
modularity value. First, for each community ci, we find
a neighbor community cj which merging them will result
in maximum ∆Q. If this maximum ∆Q is positive then
we draw an arrow from community ci to community cj .

Figure 2. Result of preliminary community detection algorithm on
Karate Network.

If each pair of these connected communities are merged
together, we will have an increase in the modularity value.
It is obvious that if it exists a bi-directional arrow between
two communities ci and cj , merging this pair of commu-
nities will lead to more increase in modularity value in
comparison with merging one of them with another single
neighbor community. This kind of merging is referred to as
”pairwise” merging and will definitely increase modularity
value though has lower speed. It must be used with a more
quick merging which we call it ”single neighbors” merging
. In this type of merging, all communities which are
connected with only one community(with an arrow), will
be merged to that corresponding community. Although
it has more speed in merging, this approach will not
guarantee to increase the modularity value. Consequently,
we use both of them and call this approach ”Hybrid”
merging. In ”Hybrid” merging, we start with ”pairwise”
merging for some iterations. Having had Rm as the
number of iterations for merging, we choose a fraction
of it(i.e. Frac) to start with pairwise merging. The rest
iterations(i.e. (1 − Frac)Rm) will be devoted to ”single
neighbors” merging. We will see that a reasonable value
for Rm is log(n). Frac can be simply set to 0.5. The
experiments will show that more increase in Rm and Frac
will result in better modularity values.

An important question to answer is, how far the number
of iterations go if the merging communities algorithm
needs to find all the communities as they are. Assume
that we assign each vertex to a community; so we have
n communities with size one. We also suppose that in
each iteration of merging methods we can merge only
two communities together. With the goal of having only
one resulted community that consists of all vertices of
the graph, we will need log(n) iterations to merge all
communities to form one communities including all ver-
tices. Hance, a reasonable value for number of iterations of
merging(i.e. Rm) is log(n). At the end of each iteration,

we compute modularity and at the end of program, we
select the maximum modularity.

Figure 3. Scheme of merging subcommunities on subcommunities
obtained by preliminary community detection algorithm on the Karate
graph. the number above arrows refers to the value of ∆Q if the corre-
sponding two communities are merged together. Communities which are
specified as red squares are the result of ”single neighbors” merging and
those communities which are specified with blue squares are the result
of ”pairwise” merging

In merging process we have log(n) iterations and each
iteration can be implemented with time complexity O(m).
Therefore, time complexity of merging stage would be
O(m.logn).

IV. COMPLEXITY ANALYSIS

As we know D =

∑n

i=1
di

n , so D = 2m
n , and m = nD

2 .
Our proposed algorithm has three parts: weighting algo-
rithm with time complexity O(R.m) and space complexity
O(m), preliminary community detection with time com-
plexity O(m.log(m)) and space complexity O(m) and
finally merging stage with time complexity O(m.log(n)).
The total time complexity of the proposed community
detection is:

R.D.n+D.n.log(n) + log(n).D.n (22)

and the total space complexity of the purposed algorithm
is

O(2m)) (23)

In the weighting algorithm, we set the number of
iterations R = dlog(n)e. So, the time complexity of
the the proposed community detection algorithm will be
O(D.n.log(n)). For real graphs which are sparse (D �
n), this time complexity will be

O(n.log(n)) (24)

The space time complexity of the proposed algorithm for
sparse graph is also

O(n) (25)

If we want to extract members of the cluster of the
partition with highest modularity, we must allocate an
array with size n for each iteration whose elements specify
the communities of the vertices. In this situation, space
complexity will be: O(n.log(n)).

Network n GN CNM EO Neig this paper
Karate 34 .401 .381 .419 .419 .420
Jazz 198 .405 .439 .445 .442 .425
Metabolic 453 .403 .402 .434 .435 .435
Email 1133 .532 .494 .574 .572 .560
Key Signing 10680 .816 .733 .846 .855 .876
Physicists 27519 - .668 .679 .723 .743

Table II
COMPARISON OF ALGORITHMS FOR THE FIRST GROUP OF NETWORKS

Network n dlog(n)e dDe FKcd LM this paper
CA-GrQc 5,242 13 12 .786 .816 .860
CA-HepTh 9,877 14 12 .648 .768 .762
CA-HepPh 12,008 14 40 .598 .659 .608
CA-AstroPh 18,772 15 44 .568 .628 .607
CA-CondMat 23,731 15 18 .599 .731 .719

Table III
COMPARISON OF ALGORITHMS FOR THE GROUP OF COLLABORATION

NETWORKS

V. EXPERIMENTAL RESULT

We evaluated our method on two different groups of
networks: A group of six benchmark networks of varying
sizes [18] and a group of five collaboration networks [19].

As it is presented in table II our method mainly out-
performs other well known methods which are reviewed
in Section II. For instance; for Karate, Key Signing and
Physicists networks, the proposed algorithm outperforms
other methods. In Metabolic network, our strategy and
Neig method obtained maximum modularity value 0.435.
It is of value to note that time complexity of Neig and
EO are O(n2logn) and O(n2log2n), while our proposed
algorithm has time complexity O(n.log(n)).

In table III, the comparison between the proposed algo-
rithm, Louvain methods (LM)[3] and generalized Louvain
method(i.e. FKcd) [17] is presented. Although our algo-
rithm has better modularity value for the first network(i.e.
CA-GrQc), for the rest of the networks LM has better
modularity value. However the modularity values obtained
by two methods specially for CA-HepTh and CondMat
networks are very close. It is worthy to note that in a
more sparse network specially with log(n) greater than
the average degree of the graph, our proposed algorithm
has better performance.

We conducted another experiment to see the impact
of choosing different values for the parameters of our
algorithm. As it is stated before, R is the number of
iterations in weighting algorithm, Rm is the number
of iterations for merging communities and Frac is the
fraction of Rm that we carry out pairwise merging. Using
similarity measure for detecting preliminary communities,
we evaluated our algorithm with three different settings for
(R,Rm, F rac). These settings are: (log(n), log(n), .5),
(log(n), 2log(n), .75) and (4log(n), 4log(n), .875) which
are presented in Table IV and in A, B and C column
respectively. We also run our algorithm not using sim-
ilarity measure (i.e. do not using weighting algorithm).
The setting for (Rm, F rac) is (4log(n), .875) which is

Network n A B C D WA,B

Karate 34 .420 .420 .420 .383 100%
Jazz 198 .409 .428 .425 .422 52%
Metabolic 453 .410 .425 .435 .426 100%
Email 1,133 .542 .558 .560 .547 100%
Key Signing 10,680 .868 .870 .876 .863 96%
Physicists 27,519 .736 .738 .743 .733 100%
CA-GrQc 5,242 .841 .848 .860 .851 91%
CA-HepTh 9,877 .750 .755 .762 .752 100%
CA-HepPh 12,008 .578 .574 .608 .612 53%
CA-AstroPh 18,772 .590 .596 .607 .582 75%
CA-CondMat 23,731 .710 .716 .719 .715 91%

Table IV
IMPACT OF (R,Rm, F rac) IN MODULARITY VALUES IN DIFFERENT

NETWORKS

presented in column D. The percentages of weighted
edges in states A or B (which are equal) is denoted
as WA,B . The edges are almost fully weighted for all
networks for state C.

As it is clearly observable from Table IV by increas-
ing the value of (R,Rm, F rac), the obtained modularity
value will generally increase. Comparing states C and D
shows that using similarity value for finding preliminary
communities (column C), except for one network (i.e.
CA-HepPh), will result in more modularity value. The
stages of merging communities for four benchmark graphs
with settings (R, Rm, Frac)=(4log(n), 4log(n), 0.875)
is depicted as figure 4. The sudden change in modularity
value is due to change from pairwise merging to single
neighbor merging method.

VI. CONCLUSION

We proposed a modularity maximization algorithm for
community detection with time complexity O(n.log(n)).
The algorithm utilized a vertex similarity measure to
find small preliminary communities to be used as start
configuration in merging stage. As we compared our
algorithm with some of well-known algorithms on several
benchmark graphs, our algorithm had better performance.
For some networks, while the proposed algorithm has
lower time complexity, the performance was comparable
with other algorithms in terms of quality of discovered
communities modularity value. Its low cost and good
accuracy enables this method to be applied on possibly
very large networks.

REFERENCES

[1] M. Girvan and M. E. Newman, Proc. Natl. Acad. Sci. USA
99, 7821 (2002).

[2] A. Clauset, M. E. Newman, and C. Moore, Phys. Rev. E 70,
066111 (2004).

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefeb-
vre, J. Stat. Mech. P10008 (2008).

[4] S. van Dongen, Ph.D. thesis, Dutch National Research
Institute for Mathematics and Computer Science, University
of Utrecht, Netherlands (2000).

[5] L. Donetti and M. A. Munoz, J. Stat. Mech. P10012 (2004)

Figure 4. Modularity value in each iteration for four benchmark
graphs. Points specified with the red circles are the start point of ”single
neighbors” merging. That is, (bFrac.Rmc+ 1)th iteration . Before this
point, ”pairwise” merging is carried out.

[6] M. E. J. Newman and E. A. Leicht, Mixture models and
exploratory analysis in networks, Proc. Natl. Acad. Sci. USA
104, 9564-9569 (2007).

[7] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Uncovering
the overlapping community structure of complex networks
in nature and society, Nature 435, 814 (2005).

[8] S.Fortunato, Community detection in graphs, Physics Re-
ports, 486, 75-174 (2010).

[9] M. E. J. Newman, Fast algorithm for detecting community
structure in networks, Phys. Rev. E 69, 066133 (2004).

[10] M. E. J. Newman, Modularity and community structure
in networks, Proc. Natl. Acad. Sci. USA 103, 8577-8582
(2006).

[11] J. Duch and A. Arenas,Community identification using
Extremal Optimization, Physical Review E, vol. 72, 027104,
(2005)

[12] M. E. J. Newman and M. Girvan, Finding and evaluating
community structure in networks, Phys. Rev. E 69, 026113
(2004).

[13] M. E. J. Newman, Detecting community structure in net-
works, Eur. Phys. J. B 38, 321-330 (2004).

[14] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D.
Parisi, Self-contained algorithms to detect communities in
networks, Proc. Natl. Acad. Sci. USA 101, 2658 (2004).

[15] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas. Com-
paring community structure identification, J. Stat. Mech.
P09008 2005.

[16] M. Rosvall and C. T. Bergstrom, Maps of random walks on
complex networks reveal community structure, Proc. Natl.
Acad. Sci. USA 104, 7327 (2007).

[17] P. De Meo, E. Ferrara, G. Fiumara, A. Provetti, Gener-
alized Louvain Method for Community Detection in Large
Networks. Proc. of the 11th International Conference On
Intelligent Systems Design And Applications, pp. 88-93,
2011.

[18] http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml

[19] http://snap.stanford.edu/data/index.html

