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Abstract. Energy efficiency is one of the most challenging issues of wireless
sensor networks, particularly in the target tracking. These networks aim at pre-
serving the distributed important sites from the targets who intend to destroy the
sites in an environment. This paper proposes a distributed energy-efficient mech-
anism for sleep scheduling the sensors followed by a dynamic cellular cluster-
ing algorithm for tracking the targets. Probabilistic positions of the targets are
predicted based on an improved particle filter procedure in each time interval.
Accordingly, a cell, including a subset of sensors, is constructed considering
the predicted positions in each time interval in order to decrease the number
of awake sensors thus optimize the sensors’ energy consumption. Moreover, a
concept named communication base has been proposed for alleviating the com-
munication volume of the sensors, in which they can exchange the information
with each other in maximum three hops. The experimental results demonstrate
the capability of the provided mechanism in optimizing the energy of sensors and
increasing the quality of target tracking.

1 Introduction

A wireless sensor network is composed of a large number of very small devices, called
sensors. Sensors are generally equipped with the capabilities of sensing, processing,
and communicating. One of the most important issues in wireless sensor networks
is energy consumption of sensors since these networks consist of a large number of
battery-limited sensors which are typically used in the high-risk areas and replacement
of batteries is practically impossible [1]. The importance of energy efficiency of sen-
sors is further significant in target tracking, as one of the most important applications
of wireless sensor networks [2].

Idle listening is a major source of energy waste for target detection and measurement
[1]. Sleep scheduling is one of the most commonly used mechanism for reducing the
energy consumption during idle listening in order to extend the network lifetime [3].
The idea of sleep scheduling is to put sensors in the sleep state for most of the time
and only wake them up periodically. In certain cases, the sleep pattern of sensors may
also be explicitly scheduled (i.e. forced to sleep or awaken on demand). Additionally,
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sensor clustering has been demonstrated to be an energy-efficient structure in sensor
networks since information routing and relaying are only operated by special sensors
namely cluster heads [4]. In each time step, a number of the sensors create a cluster and
a sensor with a specific qualification becomes cluster head. Cluster heads can aggregate
and process the information sent by cluster members, thus reduce the network load and
alleviate the bandwidth.

This paper gives an account for utilizing a multi-objective optimization technique
for localizing the sensors in the environment as a precursor for the main proposed algo-
rithm. The assumed rectangular-shape environment is composed by entrance gates and
several solid obstacles followed by a set of important sites. Minimizing the number of
sensors while maximizing the network coverage in the environment are the assumed ob-
jectives of the used technique which are in conflict with each other taking constraints of
the sensors and environment into account. Furthermore, a distributed energy-efficient
algorithm for sleep scheduling the sensors followed by a dynamic cellular clustering
procedure for effectively tracking the targets has been proposed. In naive clustering ap-
proaches, a cluster head is designated to each cluster which is responsible for gathering
the information from sensors and reporting it to other cluster heads. However, consider-
ing the fact that cluster heads must be awake continuously, their energy will finish after
some times. Hence, this paper has substituted the cluster head with the concept of cell
while the role of cluster head has been modified with constant communication bases.
Furthermore, an improved particle filter algorithm based on the radial basis function
networks has been used for predicting the trajectory of the targets through the time [5].
In each time interval, a cell is created based on the information gathered by the sensors
and probabilistic positions of the targets in the previous time interval.

The rest of this paper is organized as follows. Section 2 contains a review of the
related work. In Section 3, the comprehensive description of the system model is pre-
sented. The proposed algorithm followed with its required procedures are members of
Section 4. Section 5 demonstrates experimental results. Finally, conclusion and future
work are drawn in Section 6.

2 Related Work

Recent developments in target tracking have heightened the need for effectively maxi-
mizing the tracking quality [1, 2]. Authors in [1] applied a probability-based prediction
mechanism in order to increase the tracking accuracy and reduce the sensors’ active
time by predicting the position of each target more precisely. Y. Zhuang et al. in [2]
proposed an energy-efficient algorithm to accurately minimize the energy consumption
of sensors in wireless sensor networks taking the probabilistic distance distributions
into account. However, the number of hops needed to track the targets was high.

As one of the sleep scheduling approaches, proactive wake-up has been studied
for awakening sensors pro-actively to prepare for the approaching target [3, 4]. The
approach proposed in [3] represented a low-energy communication structure while the
energy efficiency of wireless sensor networks is enhanced by cluster-based dynamic
energy management. However, the role of cluster head was idle in the cluster which
resulted in reducing the energy of cluster head and target loss. Furthermore, the sleeping
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policy outlined in [4] performed well in energy conservation and tracking the location
of the target within the accuracy of the radius of the sensor, but there was a trade-off
between the energy savings and the tracking errors.

Particle filtering for target tracking in wireless sensor networks has already attracted
some attention [6, 7]. Recently, a class of interacting particle filters has been proposed
for multi-target tracking [6]. This class of algorithms relied on splitting the state-space
into lower dimensional sub-spaces in order to become computationally tractable, but
did not guarantee that the particles were assigned proper weights. Additionally, the ve-
locity of the targets in [6] has been assumed to be variable to choose from a predefined
range. In real world, most of the times, the targets move in the environment with dif-
ferent speeds depending on the situations. DELTA [7] was the distributed algorithm
which tracked the target solely at constant speed by dynamic clustering and selection of
cluster head based on light measurement. The advantage of DELTA was that the com-
munication range of the sensor was higher than their sensing range. However, the main
challenge of this approach was that it could only deal with constant speed and varying
speed was not considered.

As a result, followings are the main contributions of this paper:

• Proposing a new cluster formation based on a new concept named sensors’ cell;
• Providing a distributed algorithm for efficiently optimize the energy consumption

of sensors;
• Combining an evolutionary multi-objective technique for optimally localizing the

sensors with the proposed energy-efficient algorithm;
• Employing a set of communication bases for effectively decreasing the communi-

cation volume of sensors.

3 System Model

In this section, assumptions and the utilized model will be described. First, the specifi-
cations of the environment will be outlined. Then, the utilized technique for localizing
the sensors followed by the mechanism for optimally decreasing the energy consump-
tion of sensors will be provided. Finally, communication base as a new concept coupled
with utilizing the Unmanned Aerial Vehicles (UAVs) are described. clarified.

3.1 Environment

It is assumed that there is an environment, e.g., airport, city, etc., which consists of
several entrance gates, obstacles, and important sites, as Fig. 1 indicates. The dimension
of the environment is (M × N), such that M,N ∈ R+. This environment has G ∈ N
entrance gates. There are O ∈ Z∗ planar obstacles in this environment which it is not
possible to access into them. Z∗ is represented as the non-negative integer set. These
obstacles are scattered across the environment in various shapes. Moreover, there are
T ∈ N important sites such as school, hospital, etc. In this paper, individuals or objects,
including minatory purposes, are named as the targets.
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Fig. 1. An environment with gates, obstacles, and important sites

Wireless Sensor Networks: The main purpose in this paper is to track and then, de-
stroy the targets which are trying to reach the important sites. Sensors are scattered in
the environment such that targets are tracked with a high accuracy and low loss rate.
In this paper, radar-based sensors have been assumed that invisibly sense the targets.
One sensor begins to sense in its sensing radius and communicate with other sensors
within its communication radius. However, each sensor has a cost and a limited energy.
Therefore, it is desirable to use the minimum number of sensors. Here, due to simplic-
ity, the purchasing cost of sensors has not been considered. Equation (1) refers to the
first objective which is reducing the number of sensors.

f(s) = minS. (1)

S ∈ N denotes the number of sensors. Each sensor si, i ∈ (1, 2, ..., S), has a sensing
radius Rs

i ∈ R+ and a communication radius Rc
i ∈ R+. Next, (2) indicates the total

overlapping area based on the pairwise overlap between each two independent sensors.
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In this paper, it has been assumed that all sensors have the same sensing and com-
municating radius. Ls

i is the location of ith sensor. The total area of the obstacles in the
environment is expressed by (3).

E2 =

O∑
i=1

|oi|. (3)
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(a) Distance: 2 (b) Distance: 2 (c) Distance: 1.5

Fig. 2. The status of sensors with different distances from each other

The final parameter is the sum of area covered by each sensor (including the over-
lapping area), as (4) formulates.

E3 =

S∑
i=1

π × (R
s
i )

2
. (4)

As a result, (5) represents the second objective in the sensor placement problem,
which implies maximizing the covered area.

g(s) = max (E3 +E2−E1) . (5)

For expressing the function related to the second objective which is increasing the
area covered by sensors, the main challenge is the distance between locations of each
two sensors. Fig. 2 reflects the status of sensors with this assumption. Fig. 2(a) demon-
strates the distance between two sensors which is twice the sensing radius. It is obvious
that these two sensors have no intersection with each other. Now, if another sensor is
also placed next to them, a status similar to Fig. 2(b) is obtained. It is clear that the
space between these three sensors is a blind space or non-covered space and ultimately
increases the risk of losing the target. As a result, based on the experiments done, the
distance between each two independent sensors should not be less that 1.5 times the
sensing radius, as Fig. 2(c) pictures.

|Ls
i −Ls

j | ≥ 1.5× (R
s
i ). (6)

The constraint on placing the sensors in the environment includes the prohibition on
placing sensors inside/on obstacles and important sites as follows:

Rc
i ≤ 2Rs

i . (7)

Due to the fact that satisfying the aforementioned objectives combined with the con-
straints ((1) to (7)) at the same time is impossible, multi-objective optimization tech-
niques have been used [8]. Multi-objective optimization is an area of multiple criteria
decision-making, where mathematical optimization problems involving more than one
objective function should be optimized, simultaneously. Optimal decisions need to be
taken in the presence of trade-offs between two or more conflicting objectives. Solving
a multi-objective optimization problem necessitates computing all or a representative
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(a) Sensing radius: 35 meters (b) Sensing radius: 70 meters

Fig. 3. An example of localizing the sensors through the NSGA-II

set of Pareto-optimal solutions. Each Pareto-optimal solution in this context consists of
the location of sensors.

Evolutionary algorithms are one of the most well-known meta-heuristic search mech-
anisms utilized for the multi-objective optimization problems since their structure is
free of search space and goal capacities [9]. Evolutionary algorithms form a subset of
evolutionary computation, in which they generally involve techniques and implement-
ing mechanisms inspired by biological evolutions such as reproduction, mutation, re-
combination, natural selection and survival of the fittest. The main advantage of evolu-
tionary algorithms, when applied to solve multi-objective optimization problems is the
fact that they typically generate sets of solutions, allowing computation of an approx-
imation of the entire Pareto-front. Each Pareto-front includes a set of Pareto-optimal
solutions. Currently, most evolutionary multi-objective optimization algorithms apply
Pareto-based ranking schemes such as the Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) [10]. Applying this algorithm, S sensors with the same sensing radius are
dispensed in the environment. Fig. 3 presents the arrangement of the sensors obtained
from applying the NSGA-II. The difference in Fig. 3(a) and Fig. 3(b) is the sensing
radius and number of sensors. Increasing the sensing radius, the number of sensors de-
creases and consequently, the covered area also decreases. However, if the radius is too
high or too low, the number of sensors increases and the total covered area is close to
the maximum. Due to the fact that the implementation and procedure of the NSGA-II
is a pre-process for the main proposed algorithm, its description has been disregarded.

Energy Consumption of a Sensor: Each sensor is able to do a sort of actions and
consume some energy for performing each of them. Table 1 includes the energy con-
sumption of each sensor for performing the actions. Each sensor is equipped with a
battery which has a limited energy. The reason for using battery-powered sensors in-
stead of battery-less sensors is their high prices. As the battery goes out of energy, the
sensor will break down and it will result in network failure and information loss. The ac-
tions 1 to 5 outlined in Table 1 are the actions each sensor performs in the environment.

EI ∈ R+(mJ/s) denotes the energy which the sensor consumes in sleep (Idle)
state. Moreover, each sensor spends ES ∈ R+(mJ/s) when it is sensing the envi-
ronment. ET ∈ R+(mJ/s) is the energy the sensors employ for changing their states
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Table 1. Actions and corresponding energy consumption of the sensors

Type Action Symbol
1 Sleep (Idle) EI

2 Sensing ES

3 Sleep to sensing and vice versa ET

4 Communicating EC

5 Predicting EP

from sleeping to sensing and vice versa. In addition, each sensor consumes an amount
of energy to communicate with other sensors which corresponds to EC ∈ R+(mJ/s).
Finally, EP ∈ R+(mJ/s) demonstrates the energy that sensors use for predicting the
targets’ location, velocity, and direction. However, two additional actions have been
taken into consideration in this paper, namely, waiting for receiving the messages and
having delay in doing the actions of Table 1, as Table 2 provides.

Table 2. Newly added actions for sensors and related energy consumption

Type Action Symbol
6 Waiting for receiving the messages EW

7 Delay in doing the actions (1-5) ED

Although doing each action types of 1 to 5, mentioned in Table 1, has only a little
delay, however, aggregation of these little delays may cause a tracking gap in the system.
ED ∈ R+(mJ/s) implies the energy which each sensor consumes when it has a delay
in performing the mentioned actions. Furthermore, there is a waiting time for each
sensor to receive any message from its neighbors regarding the wireless communication
and transmission delays. Sensors apply the EW ∈ R+(mJ/s) when they are waiting
for receiving information from their neighbor sensors. The state diagram of energy
variations for each sensor with respect to Tables 1 and 2 can be seen in Fig. 4. According
to Fig. 4, the loop in ED

si states that the sensor may remain in delay state continuously.
This state is also applicable to ET

si and ES
si . The edge between ES

si and EP
si also means

that the sensor can predict the target after sensing the environment. As another instance,
according to the edge between ET

si and EC
si , the sensor begins to communicate with

other neighbor sensors after waking up.
As mentioned before, most of the energy of sensors is consumed for sending mes-

sages and communicating between sensors. Due to the fact that sensors have a limited
sensing and communication radius, therefore, they need to send the information they
have collected via other sensors in the environment. To decrease this communication
volume, a new concept namely communication base has been added to the environment
which is defined as follows.
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Fig. 4. The state diagram of energy variations for each sensor

Communication Bases: Sensors are not able to communicate with all other sensors
due to their limited communicating radius. In other words, if a sensor needs to com-
municate and send messages to other sensors which are far from it, it has to send the
message through other neighbor sensors that probably results in wasting the energy and
loosing the packets across the path. For this purpose, B ∈ N communication bases
will be utilized. The bases will be connected in a complete graph. As Fig. 5 illustrates,
communication bases are scattered in the environment as follows: the environment is
divided to K ∈ N equal parts and one communication base is randomly allocated to
each part. Then, it is checked if all the sensors in each part are in communication ra-
dius of their related communication base or not. If not, another communication base
is also randomly assigned to that part and this process is repeated until all sensors are
connected to the communication bases.

The next step is to merge the communication bases to have minimal number of them.
For each two communication bases, the average distance of these bases is obtained and a
new communication base is placed on that point. It will be checked whether all sensors,
related to two previous communication bases, can be connected to the new one or not.
If so, previous bases are replaced by the new one. This process is repeated for each two
communication bases in the same part. Afterwards, the merge process will be applied
on all the survived and newly obtained ones in different parts until the minimal number
of bases is obtained. As a result, in each area, depending on the type and number of
obstacles as well as the communication radius of the sensors, a number of sensors are
connected to each of the communication bases. The role of communication bases in
energy conservation is critical. Exchanging the messages, containing the information of
the targets, can be done from one sensor to other sensors in at most three hops through
these communication bases.

Unmanned Aerial Vehicles: As mentioned before, there are some gates in the en-
vironment (See Fig. 1). Targets enter the environment from these gates and desire to
destroy one or more of the important sites as well in unknown time intervals. The task
of wireless sensors is to predict the location, direction, and velocity of the targets with
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(a) Distributes sensors in the environment (b) Dividing the environment into four
parts

(c) Randomly distributing the communi-
cation bases

(d) Increasing the communication bases
until connecting all the sensors to them

(e) Merging the communication bases in-
side and between parts

(f) Removing the unnecessary commu-
nication bases until reaching a minimal
number

Fig. 5. An example of placing the communication bases in the environment

a probability. As previously mentioned, the main goal is to have all the sites at full
health. Therefore, the Unmanned Aerial Vehicles (UAV) technology is used to protect
them and destroy the targets [11]. For this purpose, a constant and independent UAV
station is considered which is connected to all communication bases. Suppose the in-
formation including the presence of a target is delivered to the UAV station in time
interval t. Depending on the information sent, this station orders to one of UAVs inside
it to fly and the UAV begins to fly over the environment. Since all the information re-
ceived by the UAV station is approximate and probabilistic, the UAV flying will be also
probabilistic. The UAV flies with the maximum speed until it reaches near the target.
Reaching near the target, it decreases its velocity and integrates its spatial information
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Algorithm 1: Pseudo code of creating and updating the sensors’ cells
Input : A fully-equipped environment, Sensing and communication radiuses of

the sensors.
Output: creating new cells to continously track/destroy the targets.
Finding the boundary sensors;
Creating the cells of the boundary sensors;
while there is at least one target which is not destroyed do

Predicting the target’s trajectory using PF-RBF procedure;
Finding the closest sensor si to the target;
Alerting the neighbors of sensor Si in order to change their status into active;
Finding the side which the target may cross from;
Putting all the sensors of the current cell into sleep status except the sensors of
the found side;
Alerting the neighbors of the side-sensors in order to change their status into
active;
Removing the current cell and then construct the new one;

end

with the information sent to the UAV station before and the new information obtained
during flight. Since the target’s predicted position is probabilistic and also there are
many sensors around the target, the destruction should be done with a high accuracy. It
is assumed that the probability of destroying the target after striking the missile is one.
This assumption preservers the sensors from the damage.

4 The Distributed Cellular Algorithm

Initializing all of described procedures/elements is known as a pre-process for the
main tracking algorithm. Algorithm 1 describes pseudo-code of the proposed algorithm
which requires a fully-equipped environment including the localized sensors and com-
munication bases followed by entrance gates, obstacles, and important sites. Two novel
concepts named Boundary sensors and sensors Cell have been proposed in the proposed
algorithm which will be precisely described in the following section.

4.1 Boundary Sensors

As pictured in Fig. 3(a), where the sensing radius is 35 meters, a number of sensors
are close to the entrance gates. Therefore, there is a unique set of boundary sensors in
front of each entrance gate. The boundary sensors are those which include the relevant
gate in their sensing radius. Apparently, to be able to predict the direction of targets,
these boundary sensors should always be awake and sense the environment, as there
is no information of when and which gate the targets will enter the environment from.
However, keeping all these boundary sensors awake is time and energy consuming.
In this paper, it is assumed that the boundary sensors wake up periodically in specific
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time intervals and start sensing as long as a sensor detects a target. This approach will
help reducing the energy consumption and eventually increasing the reliability level
of protecting the important bases. Fig. 6 is and example of boundary sensors in the
environment. To be able to firstly adapt this periodically sleeping/awaking strategy for
boundary sensors and then track the targets with maximum efficiency and accuracy, a
concept called sensors’ cell is proposed.

Fig. 6. Locus of the boundary sensors according to Fig. 3(a)

4.2 Sensors’ Cell

In this section, the concept of the cell and its applicability in heightening the accuracy
of the target tracking is proposed. As an important note, the targets are unaware of the
location of sensors and the running algorithms. Each target moves into the environment
from one of the gates. Once it appears in radius of at least one boundary sensor, this sen-
sor will sense and predict the position, velocity, and direction of the target. Obviously,
the target will continue to move and leave the sensor’s sensing radius. Therefore, firstly,
to be able to predict the position of the target with higher probability, and secondly, not
to lose the target, a preliminary cell among corresponding boundary sensors is created.
Fig. 7 indicates how the sensors’ cell is constructed.

According to Fig. 7(a), sensors which have a gate in their sensing radius are con-
nected to each other via their communication radius and created a complete graph. This
graph is represented by G = (V,E). V includes the set of boundary sensors and E is
the set of edges which exhibits the communication between these sensors. To reduce
the number of communications and have a planar graph, the convex hull of the vertices
is created. The convex hull of a set of points in the plane is the smallest convex polygon
that all points are within or on the perimeter [12]. Fig. 7(b) depicts the convex hull of
each set of boundary sensors. The target will certainly enter inside one of the prelimi-
nary created cells. Additionally, this target will definitely get close to one of the sensors
more than the others. In other words, as mentioned before, in the first step, all boundary
sensors wake up and sleep periodically until a target is recognized. As soon as a target
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(a) Complete graph for communication of
boundary sensors

(b) Covex hull of boundary sensors

Fig. 7. Forming the preliminary cell among boundary sensors

is detected, the sensor, which is closest to the target, continues its work (sensing) and
the others wait and remain in awake mode. In later steps, the target definitely continues
its way and goes out of the sensor’s sensing radius. As a result, the sensor sends the
collected information to other sensors of the cell, and then, next sensor begins sensing
based on the received information, and other sensors stay in awake mode. The informa-
tion tables are updated in each time interval and target path is obtained. Sensors inside
the cell utilize the probabilistic direction and inform the other sensors of the neighbor-
hood cell. These neighbor sensors create the new cell to continue tracking in that cell.
Next, the procedure of creating the new cells based on the exchanged information will
be defined.

Creating the New Cells: The preliminary created boundary cells should be updated
in order that the targets are not lost and the tracking procedure continues since the tar-
gets continue their movement and leave the cells consecutively. In each time interval,
the active sensor in the current cell broadcasts an alert message to the sensors in the
same cell and also its neighbor sensors which are not in the same cell. Fig. 8 indicates
how to predict and create a new cell. According to target’s estimated position and direc-
tion, sensors update their table and compare the prior position with the new estimated
position and decide on which sensor the target is going to get close to. Utilizing the
target’s estimated direction, the new cell is created and this process is repeated until the
target is tracked and destroyed. Next, the description for the tracking procedure will be
provided.

4.3 Tracking

In order to track a target, it is essential to estimate its position and direction to create
the next cell before the target leaves the current cell. Considering the fact that the tar-
get’s movement is non-linear, thus, it is difficult to estimate its exact position. Hence,
an efficient method, which is able to cope with target’s non-deterministic movement
appropriately, should be utilized. Here, the concept of a well-known probabilistic track-
ing method, i.e. Particle Filter (PF), is employed [13]. PF is a sequential Monte Carlo
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(a) The current cell and the target in-
side it

(b) Posterior probablistic direction
of the target

(c) Neighbors of sensors of the curent
cell

(d) The predicted direction of the
target

(e) Creation of new cell (f) The predicted direction of
the target inside the new cell

Fig. 8. Constructing a new cell based on the predicted trajectory of the target

method based on representing the probability densities. This method uses an on-line
posterior density estimation algorithm that predicts the posterior density of the state-
space by directly implementing the Bayesian recursion concept. Nonetheless, the pure
PF method cannot overcome the degeneracy of particles and accumulation of estimation
errors. Therefore, an improved version of this algorithm using Radial-Basis Function
Network (RBFN) has been engaged with the proposed distributed cellular algorithm
[5].

This improved version employs the RBFN in the sampling step for dynamically
constructing the process model from observing and updating the value of each parti-
cle. With the RBFN sampling step, the PF can give an accurate proposal distribution
and maintain the convergence of a sensor system. RBFN is a three-layer feed-forward
neural network which is embedded with several radial-basis functions. This network is
characterized by an input layer, a single layer of non-linear processing neurons, and an
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output layer. The reason for applying RBFN is dynamically constructing the process
model from observations and updating the value of each particle. With the RBFN sam-
pling step, this approach can give an accurate proposal distribution of a sensor. Fig. 9
demonstrates the changes in target tracking accuracy and computation time compared
with the changes in the number of particles used in the PF.

(a) 5 particles (b) 20 particles

(c) 100 particles (d) 1000 particles

(e) Computation time of prediction

Fig. 9. Prediction accuracy and computation time versus number of particles

At each step of the algorithm, in which a cell is created and sensing and tracking
operations are done inside that cell, all the information is circulated among commu-
nication bases. The reason is that since only communication bases are in contact with
the UAV station, therefore, it is essential to send all information regarding the direction
and velocity of all the targets to the UAV station. For instance, suppose tracking is be-
ing done in a cell and simultaneously a UAV is flying over the environment tracking
the target. If another target enters the environment at that moment, a new instance of
the tracking algorithm will be created. Hence, the communication bases should send
the new information to UAVs station in order that new UAVs fly or the flying UAVs
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change their directions. In this paper, for the simplicity’s sake, no constraint has been
considered on the number of UAVs. Moreover, considering the communication proto-
cols between all elements of the assumed problem is out of scope of this paper. As a
final assumption for the tracking procedure, the targets are unable to destroy the UAVs.

5 Experimental Setup and Analysis

In this section, first we will describe the experimental setup, and subsequently, the ex-
perimental results will be clarified precisely.

5.1 Experimental Setup

The system model and proposed algorithms have been implemented with Matlab R2014b
on a personal computer with an Intel Core i7 2.0 GHz CPU and 6 GB of memory. The
dimension for the assumed environment has been done in the context of M = 600m
and N = 400m. It has been assumed that there are G = 4 entrance gates (one in
each side). Moreover, there are O = 8 two-dimensional planar and solid obstacles, and
T = 10 important sites in the environment. The sensing and communication radius of
all the sensors have been considered as Rs = 35 meters and Rc = 70 meters, respec-
tively. Considering the communication radius twice the sensing radius represents the
capability of the direct communication for the sensors which have a common sensing
area.

As the setting of applied evolutionary algorithm for sensors placement, the tourna-
ment selection operator (tournament size=2), linear crossover (percentage=80) and ex-
change mutation (probability percentage=20) have been set. Moreover, the generation
and population sizes are equal to 400 and 100, respectively. The selected numbers here
are the average of various tests. Therefore, S = 83 sensors are built in the environment
followed by B = 11 communication bases.

According to the intended purposes of this paper, the concept and characteristics of
a sensor, namely Intel Imote2 [14] has been utilized. The reason for using this sensor is
the capabilities that will help us achieve previously mentioned tracking objectives. This
sensor includes a CPU, a number of internal memories, and a communication device
which uses Zigbee radio communication to communicate between each two sensors.
In addition, the sensor has a tiny OS that allows us to mount various algorithms on
it. Table 3 includes the amounts of energy consumed by each sensor for performing
actions mentioned in Tables 1 and 2. Obviously, the energy consumption of sensors in
off mode is zero. The default amount of energy for each sensor in the environment is
equal to 1800 mJ. The amounts mentioned about Types 6 and 7 are based on the same
simulation running for the proposed algorithm.

In this paper, to simplify the model, the energy of communication bases has been
considered infinite. Moreover, trying to dispense the communication bases in the en-
vironment, the environment is divided into four equal parts (K = 4). Furthermore, it
has been assumed that the initial places of UAVs are as a point at one corner of the
environment and their energy is infinite. Another point about the UAVs is their velocity.
In this study, the velocity for each UAV has been selected from the range [2, 12] m/s.
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Table 3. Amount of energy consumed by each sensor

Action type Energy consumption
1 1 mJ/s
2 13.4 mJ/s
3 2.6 mJ/s
4 11.5 mJ/s
5 16.7 mJ/s
6 9.6 mJ/s
7 0.5 mJ/s

Now, selecting the proper velocity depends upon the received information including the
target’s direction and velocity. However, in general, UAVs upon receiving the informa-
tion, make their attempt to fly as quickly as possible to reach near the target, and then,
reduce their velocity gradually in order to track the target more accurately.

The sensors and UAVs are not aware of when and where the targets enter the en-
vironment from. In other words, the targets know how many they are, in which time
interval they enter the environment, which gate they enter the environment from, and
which important base they will go through. Furthermore, it is assumed that the total
number of targets is 25 in the simulation framework. However, the moving direction
is randomly determined in each time interval. Finally, the targets select their desired
velocity from the range [0.5, 10] m/s.

5.2 Performance and Stability of the Algorithm

In every tracking system, particularly in wireless sensor networks, some events can
happen in unpredictable situations during the target tracking as followings:

Deterioration of an Awake Sensor and Probably in Sensing Mode: In this case, the
created cell may be impaired. Therefore, a new cell consists of the sensors in the previ-
ous cell and possibly some new sensors will be created in the quickest time possible in
order that the tracking operation is resumed. There are other approaches which insert a
new sensor instead of the old sensor in these cases, however, we believe that it is not an
appropriate work and puts the system into trouble and imposes high cost and energy.

Inability in Finding the Target Inside a Cell: If a sensor, sensing in a cell, cannot
determine the approximate location of the target, it sends a message to its neighbor
sensor with the second minimum distance from the target (in previous time interval).
The second sensor also begins sensing simultaneously. If it is not also able to sense, the
first sensor sends a message to all of sensors in the cell to begin sensing. This situation
will continue until the target is found. This helps the network predict the location of the
target rapidly.
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5.3 Experimental Results

There are many studies in the field of centralized target tracking in which all sensors
are usually awake and sense the environment[15, 1, 16]. The aim of those studies is to
firstly update the position of targets continuously and then transfer it among all the sen-
sors. Also, the cost of updating in centralized mode depends on the network size, which
usually involves sending/receiving many messages within the network. In contrast to
this approach, the proposed distributed algorithm needs to send and receive less mes-
sages. There is no need to exchange the information among all the sensors and even the
neighbors since the targets choose a dynamic path for moving. This issue is also helpful
for energy efficiency of sensors. In other words, since the prediction and tracking in
each step is performed inside a cell, other sensors and even its neighbors are able to go
to sleep mode which will also reduce the energy consumption. Thus, each sensor only
needs to communicate with its neighbors inside the cell or receive information from
them.

Suppose a sensor goes out of work for any reason, the algorithm has been designed
in a way that it does not have much effect on tracking quality and associated operations.
In other words, deleting a sensor from the network as well as inside the cell, one of its
neighboring sensors will be replaced and the cell still lasts. Merging two cells, when a
sensor or sensors are lost, imposes a cost consisting O (nV ), where nV is the number
of sensors used in the merge operation. In addition, the network will inflict an extra cost
for updating the tracking information when the target moves (from one cell to another
cell). As a result, the cost equals to the number of cells the targets pass.

To assess the efficiency of the proposed algorithm, it has been compared with three
well-known algorithms, VigilNet [17], Forms [18], and iTOA [19]. VigilNet algorithm
has been chosen for the similar concepts used in this paper, its high speed in track-
ing operations, and specifications of the sensors. Forms has been selected due to using
an idea close to the one proposed in this paper. Finally, the reason for choosing iTOA
is its similarity of prediction and tracking parameters used followed by the concept
of communication base. The results obtained are the average of ten experiments done
on the whole system. Three parameters including total target tracking and destroying
time (IT ), energy efficiency of the sensors (EE), and tracking quality (QT ) have been
utilized in order to evaluate the performance of the proposed algorithm. Regarding the
tracking quality, it can be noted that the purpose is to investigate how successful the sys-
tem is against all difficulties including target tracking error, low detection probability,
sensor destruction, and eventually the obstacles, which exist in the environment.

Hereinafter, the term DEECTA (Distributed Energy-Efficient Cellular Target track-
ing Algorithm) will refer to the proposed algorithm. Fig. 10(a) represents the total target
tracking and destroying time compared with other algorithms in terms of variations in
the target tracking velocity. The calculation of IT will continue since the simulation has
started until all targets are destroyed. The numbers obtained for IT in Fig. 10(a), are the
average times consumed for tracking all targets. As a final note for this evaluation, in
spite of the fact that assigning a greater velocity to the UAV will decrease the efficiency
and even the destruction of target will be harder, however, the proposed algorithm works
better than other algorithms even with a large number of target missing. Here, the tar-
gets’ velocity is fluctuating between the range [0.5, 10] m/s. Fig. 10(b) represents the
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(a) Tracking and destroying time (b) Energy efficiency of the sensors

Fig. 10. Evaluations of the algorithm considering the changes in the tracking speed of the UAVs

energy efficiency of sensors after destroying the targets. In this assessment, the per-
formance of algorithm is evaluated with changes in UAVs velocity. It can be seen that
when the UAVs’ velocity fluctuates between 6 to 12 m/s, the reduction in the amount of
energy consumed by sensors is reduced. Furthermore, Fig. 10(b) indicates that Forms
utilizes more energy than other algorithms. The reason is the large number of sensors
used in its tracking operation. The reason for superiority of the DEECTA algorithm is
that at each step of the algorithm, very small number of sensors, that is, only one sensor
in each cell, is in communication with others.

In Fig. 11(a) , the impact of sensor density on the performance of algorithm in
relation to energy consumption has been discussed with different sensing radius. If the
sensing radius is large, then the density will be low. This in turn could increase the error
rate of localization and target tracking since many small number of sensors are involved
in tracking. Now, comparing the impact of density with the amount of energy consumed,
we come to this conclusion that when the sensors density increases, energy consumption
will decline. The reason is the limited participation of sensors due to the idea of cell for
tracking the targets. However, the proposed algorithm saves large quantity of sensor
energies because of the reduction in the amount of communication. involved. Finally,
Fig. 11(b) represents the tracking quality compared to the different UAVs’ speeds. In
this case, the number of sensors involved in tracking will be important. Note that when
the number of sensors is too high or low, tracking will be done slower than if average
number of sensors are involved. It should be noted that changing the sensing radius
of the sensors, as depicted in Fig. 11(a), influences on number of utilized sensors and
consecutively on number of communication bases.

As a final point, the effectiveness of using communication bases on energy effi-
ciency and tracking accuracy will be noted. Using these bases, energy efficiency of
sensors increases by 48% compared to the case in which communication bases are not
used. Also, the communication volume decreases by 79% using these bases. If commu-
nication bases did not exist in the environment, sensors had to communicate more in
order to transmit their information to the UAV base which would also result in delay
in tracking, rapid reduction of sensors’ energy and increase in information loss. As a
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(a) Changing the sensing radius of the sen-
sors

(b) Tracking quality

Fig. 11. Energy efficiency of the sensors in a basis of increasing the number of sensors combined
with the tracking quality evaluation

result, in general, the existence of communication bases increases the security of infor-
mation transmitted and makes the detection and destruction of targets faster and easier.
To analyze the computation time required for running the algorithm, the experiments
show that the Matlab uses only 300 megabytes with 35% of the CPU.

6 Conclusion and Future Work

In this paper, the problem of multi-sensor multi-target tracking using dynamic clus-
tering and sleep scheduling in wireless sensor networks is investigated. As the main
contribution, a distributed cellular cluster formation algorithm has been proposed to
tackle with the problem of tracking and destroying the targets to protect the important
sites in the environment. As a pre-process for the proposed algorithm, a multi-objective
evolutionary algorithm has been used for sensor placement with two conflicting objec-
tives including minimum number of sensors and maximum area coverage. Next, a new
concept named cell is proposed to minimize the number of awake sensors participated
in tracking targets. Applying this method, only the sensors in the cell are turned on
periodically and there is no need to wake up all sensors.

Moreover, some communication bases have been used in order to decrease the sen-
sors’ amount of communications and also number of messaging hops. Maximizing the
tracking quality motivates us to use an improved version of the particle filter algorithm
based on radial basis function networks. Finally, in order to be able to destroy the targets
moving in the environment, a UAV station including a set of UAVs, has been lodged in
the environment. The results include reduction in communication volume, energy con-
sumption, and also improvement of reliability and tracking quality.

As multiple works which can be done in the future, the possibility of applying the
learning approaches for UAVs and sensors, considering a finite energy source for com-
munication bases in order to propose a better and robust cluster formation and tracking
mechanisms, improved target tracking procedure, and sleep scheduling algorithm for
sensors can be mentioned.
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