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Abstract: Computer networks are nowadays subject to an increasing number of attacks. Intru-
sion Detection Systems (IDS) are designed to protect them by identifying malicious behaviors or
improper uses. Since the scope is different in each case (register already-known menaces to later
recognize them or model legitimate uses to trigger when a variation is detected), IDS have failed so
far to respond against both kind of attacks. In this paper, we apply two of the efficient data mining
algorithms called Naive Bayes and tree augmented Naive Bayes for network intrusion detection and
compare them with decision tree and support vector machine. We present experimental results on
NSL-KDD data set and then observe that our intrusion detection system has higher detection rate
and lower false positive rate.

Keywords: Anomaly And Misuse Detection, Bayesian Network, Intrusion detection, Tree Augmented Naive-Bayes,
Naive-Bayes.

1 Introduction

Intrusion detection techniques are the last line of de-
fense against computer attacks behind secure network
architecture design, firewalls, and personal screening.
Despite the plethora of intrusion prevention techniques
available, attacks against computer systems are still
successful. Thus, intrusion detection systems (IDSs)
play a vital role in network security. The attacks are
targeted at stealing confidential information such as
credit card numbers, passwords, and other financial in-
formation. One solution to this dilemma is the use of
intrusion detection system (IDS). It is very popular se-
curity tool over the last two decades, and today, IDS
based on computer intelligent are attracting attention
of current research community a lot.

We present experimental results on NSL-KDD data
set and WEKA software.

Valdes and Skinner employed a naive Bayesian net-
work to perform intrusion detection on network events.
The classification capability of a naive Bayesian net-
work is identical to a threshold-based system that com-
putes the sum of the outputs obtained from the child

nodes. This is due to the fact that all models (i.e.,
the child nodes) operate independently and only in-
fluence the probability of the root node. This single
probability value at the root node can be represented
by a threshold. In addition, the restriction of having
a single parent node complicates the incorporation of
additional information. This is because variables that
represent such information cannot be linked directly to
the nodes representing the model outputs. [2]

ADAM (Audit Data Analysis and Mining) is an
intrusion detector built to detect intrusions using data
mining techniques. It first absorbs training data known
to be free of attacks. Next, it uses an algorithm to
group attacks, unknown behaviors, and false alarms.
ADAM has several useful capabilities, namely;

• Classifying an item as a known attack

• Classifying an item as a normal event

• Classifying an item as an unknown attack

• Match audit trial data to the rules it gives rise
to. [8]

Also, TAN algorithm can be used for ranking, regres-
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sion analysis, probability estimation and engine fault
diagnosis improvement.

The paper is structured as follows: Section 2 intro-
duces Bayesian networks and classifications. Section
3 introduces intrusion detection systems and different
kinds of attacks. Section 4 describes intrusion detec-
tion with Bayesian networks. Section 5 presents and
analyzes our experimental results. Section 6 summa-
rizes the main conclusions.

2 Primary Description

A Bayesian network B =< N,A,Θ > is a directed
acyclic graph (DAG) < N,A > where each node n ∈ N
represents a domain variable (e.g., a dataset attribute),
and each arc a ∈ A between nodes represents a prob-
abilistic dependency, quantified using a conditional
probability distribution (CP table) θi ∈ Θ for each
node ni. A BN can be used to compute the condi-
tional probability of one node, given values assigned to
the other nodes [3].

Figure 1: Bayesian network for cancer

The main advantages of Bayesian networks are:

• Bayesian networks can readily handle incomplete
data sets.

• Bayesian networks allow one to learn about
causal relationships.

• Bayesian networks in conjunction with Bayesian
methods and other types of models offer an ef-
ficient and principled approach for avoiding the
overfitting of data. [1]

Bayesian network structure represents the inter-
relationships among the dataset attributes. Human
experts can easily understand the network structures
and if necessary modify them to obtain better pre-
dictive models. By adding decision nodes and util-
ity nodes, BN models can also be extended to deci-
sion networks for decision analysis. Applying Bayesian
network techniques to classification involves two sub-
tasks: BN learning (training) to get a model and BN
inference to classify instances. The two major tasks
in learning a BN are: learning the graphical structure,
and then learning the parameters (CP table entries)
for that structure.

The set of parents of a node xi in BS is denoted as
πi. The structure is annotated with a set of conditional
probabilities (BP ), containing a term P (xi = Xi|πi =
Πi) for each possible value Xi of xi and each possible
instantiation Πi of πi. [3]

One application of Bayesian networks is classifica-
tion. A somewhat simplified statement of the problem
of supervised learning is as follows. Given a training
set of labeled instances of the form < a1, ..., an > , C
construct a classifier f capable of predicting the value
of C, given instances < a1, ..., an > as input. The vari-
ables A1, ..., An are called features or attributes, and
the variable C is usually referred to as the class vari-
able or label. [11]

Two types of Bayesian network classifiers that we
use them in this paper are: Naive-Bayes and Tree Aug-
mented Naive-Bayes

2.1 Naive-Bayes

A Naive-Bayes BN is a simple structure that has the
class node as the parent node of all other nodes (see
Figure 1). No other connections are allowed in a Naive-
Bayes structure. Naive-Bayes assumes that all the fea-
tures are independent of each other. In recent years, a
lot of effort has focused on improving Naive-Bayesian
classifiers, following two general approaches: selecting
feature subset and relaxing independence assumptions.
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Figure 2: Naive-Bayes Structure [6]

2.2 Tree Augmented Naive-Bayes
(TAN)

TAN classifiers extend Naive-Bayes by allowing the at-
tributes to form a tree, (see Figure 2) here c is the class
node, and the features x1, x2, x3, x4, without their re-
spective arcs from c, form a tree. [6]

Figure 3: TAN Structure [6]

3 Intrusion Detection Systems

Intrusion detection systems are used to identify, clas-
sify and possibly, to respond to benign activities. Also,
Intrusion Detection System (IDS) is used to monitor
all or partial traffic, detect malicious activities, and
respond to the activities. Network intrusion detection
system was established for the purpose of malicious ac-
tivities detection to strengthen the security, confiden-
tiality, and integrity of critical information systems.
These systems can be network-based or host-based.
HIDS is used to analyze the internal event such as pro-
cess identifier while NIDS is to analyze the external
event such as traffic volume, IP address, service port
and others. The challenge of the study is: how we can
have an IDS with high detection and low false positive
rate? [4]

Intrusion detection is comprised of two main tech-

niques which are misuse-based intrusion detection and
anomaly based intrusion detection.
Misuse-based intrusion detection IDSs that em-
ploy misuse detection approach detect attacks by com-
paring the existing signatures against the network traf-
fics captured by the IDSs. When a match is found,
the IDSs will take action as the traffics are considered
harmful to computer systems or computer networks.
Actions taken by the IDSs will normally include send-
ing alerts to network administrator and logging the in-
trusive events.

IDSs that implement misuse detection approach
are, however, incapable of detecting novel attacks. The
network administrator will need to update the stored
signatures frequently to make sure that the IDSs per-
form well in detecting intrusions. [5]
Anomaly based intrusion detection IDSs that em-
ploy anomaly detection are capable of identifying novel
attacks, that contain activities deviated from the norm.
Such IDSs utilize the built profiles that are learned
based on normal activities in computer networks. This
system has two stages:

• Learning: It works on profiles. The profiles rep-
resent the normal behavioural activities of the
users, systems, or network connections, applica-
tions. Great care should be taken while defining
profiles because currently there is no effective way
to define normal profiles that can achieve high de-
tection rate and low false positives at the same
time.

• Detection: The profile is used to detect any de-
viance in user behavior. [7]

3.1 Problems of Intrusion Detection
Systems

IDS have three common problems: temporal complex-
ity, correctness and adaptability.
The temporal complexity problem results from the ex-
tensive quantity of data that the system must supervise
in order to perceive the whole situation. False positive
and false negative rates are usually used to evaluate
the correctness of IDS. False positive can be defined as
alarms which are triggered from legitimate activities.
False negative includes attacks which are not detected
by the system. An IDS is more precise if it detects
more attacks and gives few false alarms.

In case of misuse detection systems, security ex-
perts must examine new attacks to add their corre-
sponding signatures. In anomaly detection systems,
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human experts are necessary to define relevant at-
tribute for defining the normal behavior. This leads
us to the adaptability problem. [10]

3.2 Different Types of Attacks

Attacks are grouped into four classes:

• Denial of Service (DOS): Making some ma-
chine resources unavailable or too busy to answer
to legitimate users requests.

• User to Root (U2R): Exploiting vulnerability
on a system to obtain a root access.

• Remote To Local (R2L): Using vulnerability
in order to obtain a local access like a machine
user.

• Probing: Collecting useful information or
known vulnerabilities about a network or a sys-
tem. [8]

4 Network Intrusion Detection
Using Bayesian Networks

In the following we will first discuss the Naive-Bayes
and then explore our contribution which is Tree Aug-
mented Naive-Bayes in intrusion detection.

4.1 Naive-Bayes

The purpose is to find the probability that a computer
or local network attack is going on.The result of the
propagation of changed probabilities of certain events
observed by Bayesian network can be an automatic ac-
tivation of some mechanism for attack prevention such
as: breaking TCP connections, traffic redirection or
disabling user activity. If the probability of an attack
is significantly increased but not enough to be consid-
ered as an attack, the network will generate a report
about the event and warn the system administrator.
Once the network is quantified, it is able to classify
any new object giving its attributes value using the
Bayes rule expressed by:

P (Ci|A) =
P (A|Ci)P (Ci)

P (A)
(1)

Where ci is a possible value in the session class and
A is the total evidence on attributes nodes. The ev-
idence A can be dispatched in the pieces of evidence,

say a1, a2, ..., an relative to the attributes A1, A2, ..., An

, respectively. Since naive Bayesian networks work un-
der the assumption that these attributes are indepen-
dent (giving the parent node C), their combined prob-
ability is obtained as follows:

P (Ci|A) =
P (a1|Ci)P (a2|Ci)...P (an|Ci)P (Ci)

P (A)
(2)

Note that there is no need to explicitly compute
the denominator P(A) since it is determined by
the normalization condition. Therefore, it is suf-
ficient to compute for each class ci its likelihood,
i.e. P (a1|Ci)P (a2|Ci)...P (an|Ci)P (Ci) to classify any
new object characterized by its attributes values
a1, a2, ..., an. [9]

4.2 Tree Augmented Naive-Bayes

Bayesian network structure learning without any struc-
tural restrictions is known to be a difficult problem.
Several possibilities of adding arcs between classifier
features have been proposed. TAN models are well-
known extensions of naive Bayes. The main rule of
TAN classification is given by:

P (C|A) = αP (C)P (A1|PA1, C)...P (An|PAn, C) (3)

A is the global information provided by features val-
ues. PAi is the parent feature of Ai (on which Ai

depends). The optimal tree can be obtained simply by
calculating mutual information measures between each
two variables on the basis of training instances. [10]

Figure 4: IDS with Bayesian Network
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4.3 Algorithm

We present here an algorithm to achieve an optimal
choice and placement of detectors.
Input
(i) Bayesian network BN = (V,CPT(V ),H(V )) where
V is the set of attack vertices, CPT(V ) is the set of
conditional probability tables associated with the at-
tack vertices, and H(V ) is the set of hosts affected if
the attack vertex is achieved.
(ii) Set of detectors D = (di, V (di), CPT [i][j]) where
di is the ith detector, V (di) is the set of attack ver-
tices that the detector di can be attached to (i.e., the
detector can possibly detect those attack goals being
achieved), and CPT[i][j] ∀j ∈ V (di) is the CPT tables
associated with detector i and attack vertex j.
Output:
Set of tuples θ = (di,Πi) where di is the ith detector
selected and Πi is the set of attack vertices that it is
attached to.

DETECTOR-PLACEMENT (BN, D)
System-Cost= 0
Sort all (di, aj), aj ∈ V (di), i by
BENEFIT(di, aj)
Sorted list= L
Length(L)= N
for i=1 to n do

System-Cost= System-Cost + Cost(di, aj)
/* Cost(di, aj) can be in terms of economic
cost, cost due to false alarms and missed
alarms, etc. */
if System− Cost > Thresholdτ then

break
end
if di ∈ θ then

add ajtoΠi ∈ θ
else

add(di,Πi = aj)toθ
end

end
return θ

The worst-case complexity of this algorithm is O(dv
B(v,CPT(v)) + dv log(dv) + dv), where d is the num-
ber of detectors and v is the number of attack vertices.
B(v,CPT(v)) is the cost of Bayesian inference on a BN
with v nodes and CPT(v) defining the edges. The first
term is due to calling Bayesian inference with up to d
times v terms. The second term is the sorting cost and
the third term is the cost of going through the for loop
dv times. [13]

BENEFIT (d, a)
/* This is to calculate the benefit from attaching
detector d to attack vertex a */
Let the end attack vertices in the BN be
F = fi, i = 1, 2, ...,M
for each fi, the following cost-benefit table exists
do

Perform Bayesian Inference with d as the
only detector in the network and connected
to attack vertex a
Calculate for each fi, the precision and
recall, call them, Precision(fi, d, a) ,
Recall(fi, d, a) SystemBenefit =
m∑
i=1

Benefit fi(TrueNegative) ×

Precision(fi,d, a) + Benefitfi(TruePositive)
× Recall(fi,d, a)

end
return System-Benefit

5 Experimental Result

The data used in this paper are those proposed in the
NSL-KDD for intrusion detection which are generally
used for benchmarking intrusion detection problems.
They set up an environment to collect TCP/IP dump
raws from a host located on a simulated military net-
work. Each TCP/IP connection is described by 41 fea-
tures and labeled as either normal or as an attack.

We evaluate the performance of Naive-Bayes and
then we convert that to tree augmented Naive-bayes.
So the new system has better performance.

parent childs
dst bytes num compromised
srv count count, srv diff host rate

hot is guest login
src bytes wrong fragment, flag

count same srv rate

Table 1: Connections in TAN

At the end compare them with DT and SVM. We
use full training set and 10- fold cross validation for the
testing purposes. In 10-fold cross-validation, the avail-
able data is randomly divided in to 10 disjoint subsets
of approximately equal sizes. One of the subsets is then
used as the test set and the remaining 9 sets are used
for building the classifier. The test set is then used
to estimate the accuracy. This is done repeatedly 10
times so that each subset is used as a test subset once.
The accuracy estimates is then the mean of the esti-
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mates for each of the classifiers. Cross-validation has
been tested extensively and has been found to generally
work well when sufficient data is available.

5.1 Kappa Statistic Rate

The kappa statistic measures the agreement of predic-
tion with the true class 1.0 signifies complete agree-
ment. This rate in Naive-Bayes is 0.759 and in DT is
0.989 and in SVM is 0.961 but TAN has better result,
0.988.

5.2 Confusion Matrix

A Confusion Matrix is sometimes used to represent the
result of testing, as shown in Table 1.It is a two- di-
mensional table with a row and column for each class,
each element of the matrix show the number of test
examples for which the actual class is the row and the
predicted class is the column. The Advantage of using
this matrix is that it not only tells us how many got
misclassified but also what misclassifications occurred.

False
Positive

Normal DOS R2L Probe U2R

NB 0.037 0.021 0.02 0.06 0.069
TAN 0.009 0.003 0.001 0.002 0
DT 0.01 0.002 0.001 0.003 0
SVM 0.031 0.005 0.002 0.003 0

Table 2: False Positive Rate

5.3 Time Taken to Build Model

Naive-Bayes is build in 3.77 seconds, TAN in 20.09 sec-
onds, DT in 36.86 seconds and SVM in 43.63 seconds.
So Naive-Bayes is faster.

5.4 Percent of Correct Classification

PCC of Naive-Bayes is %85 and PCC of TAN is %99.3
and PCC of DT is %99.4 and PCC of SVM is %97.8.

Normal DOS R2L Probe U2R
Normal 3474 106 162 455 589
NB 4759 7 8 12 0
TAN 4760 5 8 13 0
DT 4732 17 14 24 0
SVM
R2l 0 0 63 9 4
NB 5 0 69 1 1
TAN 10 0 63 2 1
DT 31 1 41 1 0
SVM
DOS 115 3176 1 26 15
NB 9 3321 0 3 0
TAN 7 3319 1 6 0
DT 65 3264 0 1 0
SVM
Probe 40 15 10 718 17
NB 22 10 0 768 0
TAN 20 9 1 770 0
DT 32 8 0 764 0
SVM
U2R 0 0 2 0 2
NB 2 0 2 0 0
TAN 4 0 0 0 0
DT 3 0 1 0 0
SVM

Table 3: Experimental Result in Confusion Matrix

Figure 5: ROC Curve-Performance Analysis of IDS

5.5 Detection Rate and False Positive
Rate

The detection rate is the number of attacks detected
by the system divided by the number of attacks in the
data set. It is equivalent to Recall.

The false positive rate is the number of normal con-
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nections that are misclassified as attacks divided by the
number of normal connections in the data set.

The average of false positive rate in Naive-Bayes is
0.033 and in TAN and DT is 0.006, in SVM is 0.019.

5.6 Accuracy Rate

Precision Recall F Measure
Normal 0.957 0.726 0.826

NB 0.992 0.994 0.993
TAN 0.991 0.995 0.993
DT 0.973 0.989 0.981

SVM
DOS 0.963 0.953 0.958
NB 0.995 0.996 0.996

TAN 0.996 0.996 0.996
DT 0.992 0.98 0.986

SVM
R2l 0.265 0.829 0.401
NB 0.873 0.908 0.89

TAN 0.863 0.829 0.846
DT 0.732 0.554 0.631

SVM
Probe 0.594 0.898 0.715

NB 0.98 0.96 0.97
TAN 0.973 0.963 0.968
DT 0.967 0.95 0.959

SVM
U2R 0.003 0.5 0.006
NB 0 0 0

TAN 0 0 0
DT 0 0 0

SVM
AVG 0.921 0.826 0.861
NB 0.991 0.991 0.991

TAN 0.99 0.99 0.99
DT 0.977 0.978 0.977

SVM

Table 4: Accuracy rate in different algorithms

5.7 ROC Curve

We plot a ROC (Receive Operating Characteristic)
curve which is often used to measure performance of
IDS. This curve is a plot of the detection rate against
the false positive rate, which is shown in Figure 5.

6 Conclusions

In this paper, we have proposed a framework of in-
trusion detection systems based on Naive-Bayes and
TAN algorithms and compared them with decision tree
and support vector machine. According to the result,
Naive-Bayes is found less time consuming. TAN has
better accuracy rate and detection rate, and also has
less false positive rate.
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