
Improving Example Selection for Agents
Teaching Ontology Concepts

Mohsen Afsharchi and Behrouz H. Far

Department of Electrical and Computer Engineering,
University of Calgary,Calgary, Canada

mafsharc,far@ucalgary.ca

Abstract. We present a method to improve the positive examples selec-
tion by teaching agents in a multi-agent system in which a team of agent
peers teach concepts to a learning agent. The basic idea in this method
is to let a teacher agent expand the features it uses to describe a concept
in its ontology by additional features. This resembles the typical behav-
ior of human teachers who describe concepts from different viewpoints
in the hope that one of these viewpoints comes close to the viewpoint
of a learner. The extended feature set is then used to select positive ex-
amples that together with negative examples are communicated to the
learner agent. The learner uses concept learning techniques to integrate
the new concept into its own ontology. An experimental evaluation shows
a significant learning improvement compared to the previous approach.

1 Introduction

Knowledge sharing is an integral property of multi-agent systems (MAS). In the
past, knowledge sharing among agents was usually assumed to be instantaneous
and fail safe and therefore, if one agent learns something all the others have
learned it. Recently many researchers have argued that if two agents have differ-
ent internal knowledge representations (e.g. distinctive ontologies) the knowledge
sharing is hard to be accomplished. Therefore the idea of having agents learn
concepts from the other agents has been suggested [1, 7, 9, 11]. In our recent
work, we have presented a general method for having an agent learn concepts
and their features from several other agents [1].

In this method an agent (learner agent) that wants to learn a concept will
query the other agents (teacher agents) about this concept by providing features
(and their values) or examples that it thinks are associated with the concept.
Then the teacher agents provide the learner with a set of positive and negative
examples from their understanding of the concepts (i.e. concepts known by them)
that seem to fit the query. These sets are further analyzed by the learner using
several concept learning techniques to get a better understanding of the concept.
Better understanding is equivalent to (a) identifying concepts’ relevant features
and (b) identifying the proper location of the concept in the concept hierarchy.

Note that the effectiveness of the learning strongly depends on the precision
of the positive and negative examples that the peer agents send to the learner.

2

These examples should be selected in a way that covers the broad area of the
concept being learned from different viewpoints. Of special importance are the
positive examples that they should provide the learner with all features that
discriminate the particular concept from other concepts.

When human tutors teach concepts to human learners, they usually explore
and explain the concept from various viewpoints, so that the learner can select
the viewpoint that fits best into his/her own view of the world. This essentially
means that the teacher should investigate alternative ways to characterize a
concept.

In this paper, we improve our general concept teaching/learning scenario by
devising mechanisms to help teacher agents create alternative viewpoints of a
concept in order to improve the selection of positive examples. More precisely,
we use ideas from the area of feature selection in text classification (see [4, 12])
to have a teacher agent find all the characteristic features of a concept using the
examples this teacher associates with the concept. Then the teacher ranks theses
examples associated with the concept based on the characteristic features and
sends the highest ranking example to the learner.

The structure of this paper is as follows. After a brief introduction of the con-
cepts in Section 2 the learning process is described in Section 3 and a method
for positive example selection using added features and example ranking is intro-
duced in Section 4. An intuitive example using real data set is given in Section
5 followed by related works and conclusions in Section 6 and 7.

2 Basic Definitions

In this section, we provide a brief definition of each of the two basic concepts
involved in our system which are ontologies and agents. Also we provide the
instantiations of these concepts that we require for our methods.

2.1 Ontologies and Concepts

The usage of the term ”ontology” in (computer science) literature faces problems
very similar to the usage of the term ”agent”: there is no agreed-upon formal
definition for the term, but nevertheless it is used very intensively and there
are many systems that come with a (somehow) build-in definition of the term.
Common to most usages of the term ontology is that it is considered to be a
way for representing concepts (or objects) in a hierarchy with additional ways
of defining relationships among the concepts (or objects).

This is reflected by Stume’s formal definition (see [9]) who defines a core
ontology as a structure O := (C,≤C , R, σ,≤R). Where C and R are two disjoint
sets and the elements of C are called concept identifiers and the elements of R are
so-called relation identifiers. ≤C is a partial order on C called concept hierarchy
or taxonomy and ≤R ia a partial order on R, named relation hierarchy. σ : R →
C+ is a function providing a signature for a relation such that |σ(r1)| = |σ(r2)|
for every r1, r2 ∈ R with r1 ≤R r2 and for every projection πi (1 ≤ i ≤ |σ(r1)|)

3

of the vectors σ(r1) and σ(r2) we have πi(σ(r1)) ≤C πi(σ(r2)). If c1 ≤C c2 for
c1, c2 ∈ C, then c1 is called a subconcept of c2 and c2 is a superconcept of c1.
Obviously, the relation ≤C is supposed to be connected with how concepts are
defined. In the literature, taxonomies are often build using the subset relation,
i.e. we have

Ci ≤C Cj iff for all o ∈ Ci we have o ∈ Cj .
This definition of ≤C produces a partial order on C as defined above and we
will use this definition in the following for the ontologies that our agents use.

The Stume’s definition of ontology O lacks the precise treatment of the
conecpts, C. Many works in databases and machine learning define concepts
as collections of objects that share certain feature instantiations. In the follow-
ing we assume that we have a set of features F = {f1, ..., fn} and for each feature
fi we have its domain Di = {vi1, ..., vimi} that defines the possible values the
feature can have. Then an object o = ([f1 = v1], ..., [fn = vn]) is characterized by
its values for each of the features (often one feature is the identifying name of an
object and then each object has a unique feature combination). By U we denote
the set of all (possible) objects. In machine learning, often every subset of U is
considered as a concept. In databases and in this work we want to be able to char-
acterize a concept by using feature values. Therefore, a symbolic concept Ck is
denoted by Ck([f1 = V1], ..., [fn = Vn]) where Vi = {v′i1, ..., v′iji

} ⊆ Di (if Vi = Di

then we often omit the entry for fi). An object o = ([f1 = v1], ..., [fn = vn]) is
covered by a concept Ck, if for all i we have vi ∈ Vi. In an ontology according
to the definition above, we assign a concept identifier to each symbolic concept
that we want to represent in our ontology.

Note that the objects must possess all the features of the concept Ck in
order to be covered by it. But it does not necessarily mean the objects should
not possess other features that not exhibited in the Ck. As we stated previously
the Vi ⊆ Di and that means the Vi is not necessarily equals with Di. This
naturally allows the objects to have an extended set of features resulting in a
potential ability to teach the concept from a different viewpoint.

From the point of view of knowledge representation the really interesting part
of ontologies are the relations R that a particular ontology allows. This is also
the part where we see a lot of discrepencies among different authors. In general,
all possible relations between tuples of concepts can be used in ontologies, but
usually researchers assume a small set of build-in relations and tool develop-
ers sometimes throw in the possibility to have (limited) user-defined relations.
But unfortunately, different ontologies can use the same relation identifiers for
different build-in relations, so that there is quite some confusion in this area.
Therefore, if we have two systems build by different people using ontologies over
the same set U it is very important to either identify those relations that occur
in both ontologies or to find ways the knowledge contained in the (usage of)
relations in one ontology can be used in communications between the systems.
In this work, we will show such a usage for one relation that we have called
is-similar-to with σ(is-similar-to) ∈ C2.

4

2.2 Agents

A general definition that can be instantiated to most of the views of agents in
literature sees an agent Ag as a quadruple Ag {Sit, Act, Dat, fAg}. Sit is a
set of situations the agent can be in, the representation of a situation naturally
depending on the agent’s sensory capabilities, Act is the set of actions that Ag
can perform and Dat is the set of possible values that Ag’s internal data areas
can have. In order to determine its next action, Ag uses fAg : Sit×Dat → Act
applied to the current situation and the current values of its internal data areas.

As we want to focus on the knowledge representation used by agents, so we
look more closely at Dat. We assume that every element of Dat of an agent
Ag contains an ontology area OAg as defined in the previous subsection that
represents the agent’s view and knowledge of concepts. For the concepts in the
taxonomy of OAg there might be additional data, beyond features, that the agent
requires from time to time. Naturally, there will be additional data areas rep-
resenting information about the agent itself, knowledge about other agents and
the world that the designer of the agent may want to be represented differently
than in OAg. In the rest of this paper, we will concentrate on how the agent uses
and manipulates its ontology.

3 Learning Process

In this section we provide a brief discussion about the multi-agent concept learn-
ing we presented in [1]. We will see how we changed this general scheme to
improve positive example selection in Section 4.

We have developed a method that demonstrates how an agent can learn new
concepts for its ontology with the help of other agents. This naturally assumes
that not all agents have the same ontology (otherwise learning would not be
necessary). In fact, we additionally assume that there are only some base features
Fbase ⊆ F that are known and can be recognized by all agents and that there
are only some base symbolic concepts Cbase that are known to all agents by
name, their feature values for the base features and the objects that are covered
by them. Outside of this base common knowledge, individual agents may come
with additional features they can recognize and additional concepts they know.
Given this setting, agents will develop problems in working together, since the
common grounds for communication are not there. To solve this problem, agents
need to acquire the concepts outside of Cbase that other agents have, at least
those concepts that are needed to establish the necessary communication to
work together on a given task. The basic idea is to have an agent learn a required
concept (or at least a good approximation) of it with the help of the other agents.

3.1 Interaction Scheme

Although we want all agents to be able to learn new concepts, for explaining
our interaction scheme we designate one agent, AgL, as the one that wants to

5

learn a new concept and the other agents, Ag1,...,Agm, will be its teachers. AgL

has an ontology OL = (CL,≤C , RL, σL,≤RL) and knows a set of features FL.
Analogously, Agi has as ontology Oi = (Ci,≤C , Ri, σi,≤Ri

) and knows a set of
features Fi. For a concept c known to the agent Agi, this agent has in its data
areas a set pexc

i ⊆ U of positive examples for c that it can use to teach c to AgL.
Part of ActL are actions QueryConcept, AskClassify, Learn, and Integrate,
while part of the Actis are the actions FindConcept, CreateNegEx, ReplyQuery,
ClassifyEx and ReplyClass; all with appropriate arguments. These actions
form our interaction scheme in the following manner:

1. AgL determines it needs to know about a particular concept cgoal and per-
forms QueryConcept(“cgoal”) to inform the other agents about this need.

2. Each agent Agi reacts to AgL’s query by:
(a) performing FindConcept(“cgoal”), which leads to a set of candidate con-

cepts Ccand
i ,

(b) selecting the “best” candidate ci out of Ccand
i ,

(c) selecting a given number of elements out of pexci
i , thus creating pi,

(d) performing CreateNegEx(ci) to produce a given number of (good) neg-
ative examples for ci, which we call the set ni,

(e) performing ReplyQuery(path(ci),pi,ni).
3. AgL collects the answers (path(ci),pi,ni) from all agents and uses a learner to

learn cgoal from these combined examples (action Learn((p1,n1),...,(pm,nm))).
If there are conflicts, then it resolves them with the help of the other agents
using AskClassify (resp. ClassifyEx and ReplyClass by the other agents.

4. AgL uses the learned cgoal and the collected path(ci)s from the other agents
to construct an ontology path Cpath leading to cgoal within its ontology OL

(action Integrate(path(c1),...,path(cm))).

The result of this learning/teaching scheme is the description of cgoal in terms of
AgL’s feature set FL and an updated ontologyOnew

L = (Cnew
L ,≤C , RL, σL,≤RL

).
AgL will also create a set pex

cgoal

L in case another agent wants AgL to teach it
cgoal.

3.2 Selecting Positive and Negative Examples

While supplying the learner with more examples normally are the better, in our
case we have to take into account that the more objects from the positive and
negative examples are selected, the more expensive the communication becomes
and the more effort AgL will have to spent on learning. On the other hand, less
examples usually means less precise learning result. Therefore the number of
examples communicated to AgL by each agent should be selected as a parameter
of the whole system.

For negative examples, since every concept other than queried concept cj

can be categorized as its counter concept, the number of associated objects
(which naturally are negative examples) could be potentially very high. This
big volume of the negative examples makes the selection of a subset of them a

6

crucial task.As we elaborated negative example selection and improvement and
reported the result [1], in Section 3.3 we briefly explain this problem.

For positive examples, Since each agent Agi stores for each concept cj a set
pex

cj

i of positive examples , i.e. a set of objects covered by cj , coming up with
positive example objects for a concept known to Agi does not seem to be a big
problem, because selecting the appropriate number of elements for pi could be
realized by randomly sampling pexci

i . But as we will show in Section 4, applying
the viewpoint of the teacher agents to select better positive examples can make
a significant improvement in the learner’s effectiveness. In Section 4 we present
two algorithms to extract discriminative features and ranking positive examples
respectively.

3.3 Selecting Negative Examples by Ontology Guidance

Selecting negative examples for a concept is not easy. Obviously, the set of neg-
ative examples nexc for a concept c is defined as

nexc = U − {o|o covered by c}.
This can be a very large set and usually different elements of this set provide
learners with a different quality of advice. Good negative examples are examples
that “nearly” are in the set covered by the concept, a kind of “near-misses” that
allow to highlight the borders of a concept. The fact that our agents have ontolo-
gies allows us to do a better job in selecting negative examples than randomly
selecting out of nexci (by Agi). The key for this better selection is to make use of
the taxonomy information Agi has and the relations in Ri. The later naturally
depends on what relations are available.

Let us first look at the possibilities that the taxonomy offers. Each supercon-
cept of the concept ci –that Agi sees as the best concept to answer AgL’s query–
can be used to limit the set of negative examples nexci

i that Agi should consider
for its answer. As a superconcept of ci, these concepts share a lot of feature
values with ci, so that the elements in their set of positive examples that are
not covered by ci are good candidates for “near-misses”. In fact, sibling concepts
of ci or its superconcepts are even better source for negative examples since all
their positive examples are not covered by ci.

Since all agents use the same relation ≤C , all agents can use the taxonomy
information to limit the pool of negative examples to choose from. But also
information provided by some other relations can be used. As an example, let
us look at the usage of the relation is-similar-to that we mentioned earlier.
The motivation for is-similar-to is to allow to express the similarity between
two concepts that are far away from each other in the taxonomy tree, but that
share a lot of feature values. This makes is-similar-to a perfect candidate for
helping with the selection of negative examples. After collecting all candidates in
nexci

i , we again select the given number of examples for ni as a random sample.
Note that an is-similar-to-relation can be automatically computed for a

given Ci and Fi by introducing a similarity measure simf
i on feature values for

each feature f ∈ Fi with domain D: simf
i : D ×D → [0..1]. We can create out

of this a similarity measure simU
i for objects by, for example, summing up the

7

similarities for each feature. More formally, let o = ([f1 = v1], ..., [fn = vn]) and
o′ = ([f1 = v′1], ..., [fn = v′n]), then

simU
i =

∑n
j=1 sim

fj

i (vj , v
′
j)

where sim
fj

i (x, y) = 0, if fj /∈ Fi.
Out of this, we can create is-similar-toi between two concepts c and c′, if

simU
i (o, o′) ≥ simthreshold for all o ∈ pexc

i and o′ ∈ pexo′
i , with simthreshold

as a given parameter. While it would be better to use all objects covered by c
and c′, this can be impossible or at least very expensive, so that we suggest to
use the examples that are already there.

4 Positive Example Selection by Discriminative Feature
Selection and Example Ranking

Technically, there is a set of objects associated with each concept cj for the
teacher agent Agi as positive examples, and if cj is selected as an answer to
a query, this set is simply available for the teacher to select positive examples
and send it to the learner. Randomly selection of the positive examples is the
most straightforward way which while keeps the selection process easy, does not
guarantee the comprehensiveness of the positive examples. That is because the
set of positive examples should cover the border of the concept as well as the
body of the concept. Therefore good subset of positive examples are examples
that cover the whole space of positive examples.

One very important issue here is that the selection of positive examples is
the point that the teacher can exert its unique view in the teaching of a specific
concept, therefore, the teacher agent should utilize some methods to reflect its
viewpoint. Similar to the teaching process in human beings we used the feature
describing a concept as a point that the teacher can express its viewpoint. Apart
from the features in the concept definition in the ontology, there might be some
other very characterizing features in the positive examples which the teacher
agent can rely on in the teaching of the concept by selecting the positive examples
using them. We believe that these characterizing features are the features that
are more discriminatory than other features in the examples. Fortunately, there is
a very close relation between the technical problem we mentioned in the previous
paragraph and the teaching from different viewpoints. By selecting the subset
of positive examples using more discriminative features, the teacher agent not
only exerts its unique point of view, but it has a criterion to arrange the selected
subset in a very comprehensive way.

To identify discriminative features and select examples based on them, we in-
troduced a new action SelectPosEx(ci) and replaced the section (c) of step 2 of
our general interaction scheme as follows: performing SelectPosEx(ci) to select
a given number of good elements out of pexci

i , thus creating pi. In SelectPosEx
we use the differences of features between the given positive examples (pexck

i)
and negative examples (nexck

i) to calculate the feature strength in discrimina-
tion between the positive and negative examples. We also use feature strength
to identify more discriminative features which we call them core features, and

8

denote them by CF . Then we use CF , to extract good positive examples from
pexck

i and we call them distinctive positive examples(pi).

4.1 Identifying Discriminative Features

We identify the discriminative features based on the notion called Relief which
we borrowed the idea from [5] Using ReliefF which is a more robust algorithm
from Relief family we developed an algorithm to identify the discriminative fea-
tures. This algorithm constructs the set of core features of pex, CF , by ranking
the feature strengths among the features that are exhibited in pex and nex.

The key idea of our method , given in Algorithm 1, is to estimate the strength
of features according to how well their values distinguish between examples that
are near to each other. For that purpose, given a randomly selected example ei

(line 3), algorithm searches for its k nearest neighbors from the pex, called near-
est hit P , and k others from the nex, called nearest miss N (line 4). It updates
the strength estimation W [F] for the set of all features F depending on their
values for ei, P , and N (lines 6 and 7). If ei and majority of k examples in P
are different in their values for the feature f then the the feature f separates
examples in the same concept which is not desirable so we decrease the strength
estimation W [f]. On the other hand if ei and majority of k examples in N are
different in their values for the feature f then the feature f separates a positive
example from negative examples which is desirable so we increase the strength
estimation W [f]. The k is a user definable parameter which increase the robust-
ness of the algorithm against the noisy data. The whole process is repeated for
m times, where m is also a user defined parameter.

Function diff(f, ei, ej) calculates the difference between the values of the
feature f for two instances ei and ej . For nominal features it is define as:

diff(f, ei, ej) =
{

0; value(f, ei) = value(f, ej)
1; otherwise

and for numerical features as:

diff(f, ei, ej) =
|value(f, ei)− value(f, ej)|

max(f)−min(f)

The algorithm then determine φ as the average of W (F). Obviously because
the teacher is interested in the feature in pex it filters the set of features and
add to the CF all features which are seen at least in one e in pex and W (f) > θ
.

4.2 Extracting Distinctive Positive Examples

We have shown how to compute feature strengths and determine φ so as to
select a set of discriminative features for formulating the core features (CF) of

9

Algorithm 1 Calculate the vector of W of estimations of the features strenght
1. set all weights W [F] := 0.0
2. for i = 0 to m do
3. Randomly select an example ei

4. find k nearest hit examples in pex, P
5. find k nearest miss examples in nex, N
6. for all f in F do

7. W [f] = W [f]−
k∑

j=1

diff(f, ei, Pj)/(m · k) +

k∑
j=1

diff(f, ei, Nj)/(m · k)

8. end for
9. end for

10. φ 1
|F |

|F |∑
i=1

W [fi]

11. for all f in F do
12. if f > φ and f ∈ pex then
13. append f to CF
14. end if
15. end for

the positive examples . Another important issue is, given an example, what is
the criterion, in order to consider it a potential distinctive positive example?

Algorithm 2 shows the mechanism that we utilized to select the set of dis-
tinctive positive examples. The key idea of our procedure , given in Algorithm
2, is to estimate the distance of every positive examples from their peers in the
negative side and use this estimation to assess the distribution of the examples
in the whole space of positive examples. For that purpose, for every example
ei (line 3), algorithm searches for its k nearest neighbors from the nex, called
nearest miss N (line 4). To find theses nearest misses we used the similarity
function that we presented in the previous section. the algorithms then updates
the distance estimation D[ei] for the set of all features CF depending on their
values for ei and each example in N using the diff function(lines 5, 6 and 7).
Obviously the examples with minimum value of D[ei] are in the border and as
the value goes higher the examples go farther from the border. In order to se-
lect more comprehensive set of positive examples, the teacher agent selects the
examples that are not very close to each other assuming that the close examples
do not add so much to the learner knowledge and its accuracy. The dist function
calculates the distance of the selected example ej with candidate example ei.
If the value of distance is greater than θ for all selected examples, then teacher
adds it to the set of selected positive example p (line 12 and 13). The value for θ
is selected based on the number of examples the teacher can send to the learner
and the average distance between examples.

Function diff(f, ei, ej) is defined similar to the previous section and function
dist is defined based on the diff function as follows:

10

Algorithm 2 Select the set of p of comprehensive positive examples
1. set all distances D[pex] := 0.0
2. for i = 0 to |pex| do
3. select an example ei

4. find k nearest miss examples in nex, N
5. for all f in CF do

6. D[ei] = D[ei] +

k∑
j=1

diff(f, ei, Nj)/k

7. end for
8. end for
9. p = ∅

10. while there is ei in pex do
11. take out of pex an example ei such that D[ei] is minimum
12. if dist(ei, ej) > θ for all ej ∈ p then
13. append ei to p
14. end if
15. end while
16. return p

dist(ei, ej) =
|CF|∑

k=1

diff(fk, ei, ej)

5 Experimental Results

We have conducted several experiments using the general setup of our multi-
agent system from [1], in which the teacher agents have some differences in their
“world view”, simply because there are different ways how to organize the objects
in the world, but where there is nevertheless a large agreement on many things.
We changed the process of positive example selection to enable the teacher agents
to reflect their specific “viewpoint” by selecting some examples that they think
are more distinctive positive examples.

5.1 The University Units and Courses Domain

The Course catalog ontology domain has been chosen as the basic set up for
our multi-agent system. (see [3]). The set of objects U consists of files describing
the courses offered by Cornell University, the University of Washington and the
University of Michigan. The domain is additionally structured according to the
university units of these universities, which creates different ontologies for each
of them. In fact, our teacher agents will be agents that each represents one of
these 3 universities (AgC , AgW , AgM). The course files (and unit structure)
for Cornell and Washington were taken from [3], the ones for Michigan from

11

their web site at [10]. A course file contains course identifier, course description
and the prerequisites of a course. The three universities together offer 19061
courses(which naturally is the total number of examples in the system) and each
university’s ontology has at least 166 concepts on top of their courses. For each
of the following examples, our agents used their full ontologies even if we report
only on parts of them.

Borrowing some ideas from the field of information retrieval, to represent
the courses in terms of features, we had a little bit of preparation to do. The
course description, that is the main feature in our method of learning, usually
determines by which organizational units a course should be taught and the
descriptions are text-based. Defining concepts based on objects that consist of
natural language texts is not easy, but an area of quite a lot of interest and
practical applications. One way of defining features for such texts to group them
is to look for particular words in the texts or word combinations (see [4]). Unfor-
tunately, there is a lot of substitutivity in these word combinations, so that we
need features that allow us to express this substitutivity. For example, feature
fpicture,photo,figure: text → Boolean is true for a text t, if either picture
or photo or figure occurs in t. For our application domain, it is not clear what
substitutivities should be considered (just synonyms are not what we are looking
for here), so that we base our features for the course descriptions on what we
call a set K of key words. Then we have a feature for each possible subset of K
(excluding the empty set) as described above. Different key sets create different
feature sets.

To instantiate Algorithm 1 and 2 for our context we first used the similarity
function of section 3.3 to find k nearest hit for each document example ei. The
same process is done to find k nearest miss document. To calculate feature
weights, W , we needed to realize a diff function which was compatible with our
context. In the information retrieval domain one common scheme, to weight a
keyword is known as “term frequency inverse document frequency” and originally
for a keyword(i.e term) i in document j is defined as:

ωi,j = tfi,j ∗ ln N
n

where tfi,j is the frequency of the keyword i in document j, N is the total num-
ber of documents which naturally in our context is the number of documents
both in pex and nex, and n is the number of documents where keyword i occurs
at least once. To make this weighting scheme works with our features, we sub-
stitute keywords by the set of keywords that we use for our system. Therefore
for example in addition to ”differential” and ”equation” we also count the oc-
currences of ”differential equation” in documents as a single feature. Based on
this definition we instantiate the diff function as follows:

diff(f, ei, ej) = |ωf,ei − ωf,ej |

5.2 Different Positive Example Selection Comparison

To show the efficiency of the learner when a concept thought from different
viewpoints, we conduct some interesting experiments. For first experiment, sim-

12

Table 1. Comparison of positive example selection mechanisms for Greek

n% Distinctive Set Random Set1 Random Set2 Random Set3

10 0.736 0.627 0.542 0.631
20 0.770 0.639 0.563 0.637
30 0.792 0.707 0.572 0.652
40 0.830 0.712 0.603 0.703
50 0.861 0.737 0.645 0.729
60 0.890 0.722 0.669 0.748
70 0.912 0.794 0.704 0.733
80 0.908 0.802 0.737 0.761
90 0.902 0.783 0.719 0.799
100 0.904 0.796 0.741 0.811

Table 2. Comparison of positive example selection mechanisms for Mathematics

n% Distinctive Set Random Set1 Random Set2 Random Set3

10 0.702 0.691 0.611 0.707
20 0.773 0.719 0.658 0.712
30 0.824 0.721 0.693 0.767
40 0.820 0.752 0.704 0.765
50 0.823 0.798 0.768 0.794
60 0.835 0.811 0.790 0.819
70 0.844 0.813 0.789 0.824
80 0.855 0.828 0.808 0.836
90 0.910 0.852 0.824 0.830
100 0.931 0.860 0.842 0.852

ilar to our experiment in [1], we assumed that the learning agent is supposed
to provide someone at a university with suggestions for how a unit concerned
with Greek should be characterized. This learning agent would pose a query
based on providing a key set out of its own key set of words, in our example this
query key set would be {greek,program,attic,literature}. We also further
assumed that the relevant concepts in Cbase are Cbase= {university} and the rel-
evant concepts in Fbase are created using the key set Kbase = {class, course,
program, literature,modern, attic,classic, culture, prose,
graduate,seminar,grammar,drama,greek}.

Based on the above mentioned assumptions, we enabled our agents to apply
Algorithm 1 to come up with the core features representing the unique viewpoint
of each agent. A subset of the core feature key set which is not common with
Kbase, for each agents were as follows:
CFC ={democritus,religion,english,herodotus,medieval}
CFW = {tragedy,orator,antique,myths,archeology}
CFM = {modern,epic,classic,odyssey, ancient,aristotelian,aeneid}.
Then we let the agents to extract positive examples using CF and Algorithm
2 and send them to the learner. In the learner side and in order to evaluate
the efficiency of our method in selecting distinctive positive examples, we first

13

Table 3. Comparison of positive example selection mechanisms for nine concepts

n% Distinctive Set Random Set1 Random Set2 Random Set3

10 0.572 0.447 0.439 0.509
20 0.618 0.511 0.483 0.525
30 0.614 0.530 0.529 0.520
40 0.648 0.534 0.531 0.605
50 0.686 0.548 0.576 0.628
60 0.729 0.581 0.612 0.698
70 0.740 0.611 0.627 0.711
80 0.768 0.674 0.684 0.754
90 0.806 0.745 0.709 0.788
100 0.839 0.767 0.723 0.804

trained the learner with the set of distinctive examples and test it against the
set of all 1016 positive examples associated with concept greek in the world of
three agents. Table 1 shows the percentage of the true classification that the
learner did. To see how our method improves the efficiency of whole process of
learning we also trained the learner with three different random set(e.g. Random
Set 1,2,3) of positive examples(which obviously associated with concept which
is being learned). As Table 1 shows the major improvement in the classification
where the accuracy of Distinctive Set (90.4 %) is 9.3% more than the best ran-
dom set(Random set 3 - 81.1%) . The experiment is repeated n times, where n
is the percentage of the positive examples used in training.
We repeated the experiment for the concept mathematics with query key set:
{mathematics,program,science,calculus} and the key set Kbase = {class,
course, program, science, calculus, mathematics, school, graduate,
seminar,systems,number, solution}. A subset of core features for each agents
were as follows:
CFC= {vector,elementary,statistics,geometry,function,proof}
CFW = {equation,logic,linear,fourier,integral }
CFM = {algebra,matrices,graph,theorem,dynamics,logarithm }.
Table 2 shows the major improvement(93.1%-86.0% =7.1%) in the classifica-
tion when we test the learner over 2117 positive examples associated with con-
cept mathematics in the world of three agents. In addition to mathematics and
greek we repeated our experiment for seven other concepts: computer science,
linguistics, german, japanese, chemistry, physics and chinese. Table 3
shows the average result for nine concepts. Again we see a significant improve-
ment in classification accuracy of 3.5%(83.9% - 80.4%).

6 Related Works

Most works in the multi-agent concept learning did not focus on the quality of
the positive and negative examples. The Williams’s work [11] introduced the idea
of using learning to improve the mutual understanding about a concept between
two agents. In contrast to our method, Williams uses only a flat repository of

14

concepts, not a real ontology. The learning is used to have only two agents
develop a common feature description about a particular concept assuming that
the agents share the same perception of objects. Also there is no concentration on
the quality of examples. [7] presents a method how one agent can train another
agent to recognize a concept by providing selected positive training examples.
while the multi-agent dimension is not addressed and no usage of ontologies is
made, the quality of examples also not addressed.

Researchers have studied various aspects of feature selection. Different fea-
ture selection methods can be broadly categorized into the wrapper model [4]
and the filter model [8, 6]. The wrapper model uses the predictive accuracy of
a predetermined learning algorithm to determine the goodness of the selected
subsets. The filter model separates feature selection from classifier learning and
selects feature subsets that are independent of any learning algorithm. It relies
on various measures of the general characteristics of the training data such as
distance, information, dependency, and consistency. According to the availability
of class labels, there are feature selection methods for supervised learning [5].

7 Conclusion

We presented a method to improve the process of positive example selection
by teaching agent in multi-agent systems that a group of agents try to teach a
concept to a learning agent. We established our method base on the reflection of
the viewpoints of the teacher agents. Similar to the behavior of human beings,
the teacher agents express their viewpoints with the features that they think are
more discriminatory. Then they use these features to extract more distinctive
positive examples which naturally characterize the queried concept better. We
found this method very useful in monotonous distribution over whole positive
example space. Our experimental results revealed the improvement of the learner
effectiveness using this new method of positive example selection. As a future
work we will expand the method for better selection of negative examples and
we will analyze the behavior of the selected subset of the negative examples over
the whole space of negative examples.

References

1. M. Afsharchi, B.H. Far, J. Denzinger: Ontology-Guided Learning to Improve
Communication between Groups of Agents, Proc. AAMAS-06 (in press), 2006.
http://www.enel.ucalgary.ca/ afsharch/aamas06.pdf

2. R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial Intel-
ligence, 97(1-2): 273324, 1997.

3. Illinois Semantic Integration Archive. http:// anhai.cs.uiuc.edu/archive/, as seen
on Jan 30, 2005.

4. D. Koller, M. Sahami: Hierarchically Classifying Documents Using Very Few
Words, Proc. ICML-97, 1997, pp. 170–178.

5. M. Robnik-Sikonja, I. Kononenko: Theoretical and Empirical Analysis of ReliefF
and RReliefF. Machine Learning Journal, Volume 53, 2003, pp. 23–69.

15

6. M.A. Hall. Correlation-based feature selection for discrete and numeric class ma-
chine learning. In Proceedings of the Seventeenth International Conference on Ma-
chine Learning, pages 359366, 2000.

7. S. Sen, P.P. Kar: Sharing a concept, AAAI Tech Report SS-02-02, Stanford, 2002.
8. H. Liu, H. Motoda, and L. Yu. Feature selection with selective sampling. In Pro-

ceedings of the Nineteenth International Conference on Machine Learning, pages
395402, 2002.

9. G. Stumme: Using Ontologies and Formal Concept Analysis for Organizing Busi-
ness Knowledge, in J. Becker, R. Knackstedt (Eds.): Wissensmanagement mit Ref-
erenzmodellen – Konzepte für die Anwendungssystem- und Organisationsgestal-
tung, Physica, 2002, pp. 163–174.

10. University of Michigan academic units. http:// www.umich.edu/units.html, as seen
on Jan 30, 2005.

11. A.B. Williams: Learning to Share Meaning in a Multi Agent System, Autonomous
Agents and Multi Agent Systems 8(2), 2004, pp. 165–193.

12. Y. Yang, Y., J.P. Pedersen: A Comparative Study on Feature Selection in Text
Categorization. Proceedings of the Fourteenth International Conference on Ma-
chine Learning (ICML’97), 1997, pp412-420.

