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Abstract. A substantial amount of study in multi-agent systems has fo-
cused on multi-agent coordination for over twenty years. Many challenges
in multi-agent coordination can be modeled as Distributed Constraint
Optimization (DCOP). Finding the optimal solution for a DCOP is NP-
hard, so using incomplete algorithms that are faster are more desirable.
Many incomplete algorithms decompose a DCOP to subgraphs to find
solutions to it and maintain the partitioning of the DCOP unchanged
during algorithm execution. These algorithms provide local optimal so-
lutions. Decomposition of a DCOP has direct influence on the quality
of solutions. With the popularity of incomplete algorithms, finding the
best decomposition of a DCOP becomes a major issue. In this paper, we
propose the first known learning algorithm by which the leader of each
group optimizes its group with the purpose of increasing total utility.
The leader agents learn to add/remove agents of their groups. This algo-
rithm works dynamically to optimize the existing groups and we call it
Dynamic Group Optimization algorithm (DGOPT). From quality, and
convergence time point of view, DGOPT outperforms recent algorithms.

Keywords: Multi Agent Systems, Distributed Constraint Optimization, t-distance
Optimality

1 Introduction

Multi-agent systems are a popular way to model complex interactions and co-
ordination required to solve distributed problems. A multi-agent system is a
network of agents used to perform distributed computation. Networks of agents
are heterogeneous and not all agents have direct communication link to one
another. Additionally, information is distributed throughout the network either
due to privacy concerns or impractically of centralizing. In this network each
agent is autonomous entity with local information and has ability to perform an
action in cooperative situations in which agents collaborate to achieve a common
goal.

Agents need to coordinate their activities to accomplish their collective goals.
Distributed Constraint Optimization (DCOP) is a common formalism to repre-
sent multi-agent systems in which agents cooperate to optimize a global objective
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[10, 13]. DCOP has been applied to different domains. DCOPs are able to model
the task of scheduling meetings in large organizations, where privacy needs make
centralized constraint optimization difficult [9]. DCOPs are also able to model
the task of allocating sensor nodes to targets in sensor networks, where the lim-
ited communication and computation power of individual sensor nodes makes
centralized constraint optimization difficult [11]. Finally, DCOPs are able to
model the task of coordinating teams of unmanned vehicles in disaster response
scenarios, where the need for rapid local responses makes centralized constraint
optimization difficult [2].

There are two main categories for DCOP algorithms, complete and incom-
plete algorithms. Complete algorithms always find a configuration of variables
that maximizes the global objective function. Adopt (Asynchronous Distributed
OPTimization) [11] and DPOP (Dynamic Programming OPtimisation) [13] are
two well known complete algorithms. There are lots of works which try to extend
the ADOPT algorithm as a complete algorithm [4, 15]. The important point in
complete algorithms is that finding DCOP solutions which maximize the global
objective function is NP-hard. Some of recent works try to solve this problem
[16, 17].

In contrast, incomplete algorithms find semi optimal solutions and do not
guarantee to achieve global optimal solution. Algorithms such as Max-Sum [1],
Distributed Arc Consistency [3] and KOPT [7] are in this category.

In the most of incomplete algorithms a network of agents is divided to groups
in which a DCOP problem is solved locally [7, 10, 18]. The local attempt of agents
in groups to solve DCOP leads to solving it globally, but the solution found is
not the best.

KOPT and DALO algorithms are two examples of incomplete algorithms that
divide the network of agents to subgroups to solve DCOP. k-optimal algorithms
guarantee to provide solutions that cannot be improved by any group of k or
fewer agents changing their decision. KOPT algorithm is the only incomplete
algorithm which works for arbitrary k [7].

DALO is a novel asynchronous incomplete algorithm which works based on
t-distance optimality [8, 18]. In DALO algorithm groups are formed based on the
distance between nodes in the constraint graph instead of strict limits on group
size. There are lots of incomplete algorithms to solve DCOP. The main concern
in all of these algorithms is how to form groups because groups formation has
direct influence on the quality of solution which is gained. We try to find better
group formations through a dynamic approach. This approach works based on
the contribution of each agent in the reward of the group.

The structure of the paper is as follows: In section 2, formal definitions of
DCOP and t-distance optimality solutions are presented. Section 3, gives a gen-
eral view of different group formations. In section 4, DALO algorithm and its
main issues are described. The proposed algorithm is introduced in section 5.
Detail description of dynamic group optimization is given in section 5.1. DGOPT
algorithm is introduced in section 6. Experimental results of DGOPT algorithm
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and its comparison with DALO algorithm are depicted in section 7. Finally,
conclusion and future work are presented in section 8.

2 Background

In this section, we will provide some basic definitions about DCOP and t-distance
optimality.

2.1 Distributed Constraint Optimization

A DCOP is defined by a set of variables V = {v1, . . . , vn}, a set of discrete finite
domains for each vi;D = {D1, . . . ,Dn}, and a set of constraints C = {c1, . . . , cq}.
Each variable is controlled by a separate agent capable of communicating with
other agents. A joint assignment A = {a1, . . . , an} specifies a value for each
variable, in which ai is the value of agent i. Each constraint includes a set of
variables. A constraint defines a real-valued cost based on the values which each
agent chooses for its variable. This paper holds in view binary constraints to
avoid complexity; that is to say each constraint includes two variables. Thus, for
each pair of variables (vi, vj), there is a cost function Fij : Di×Dj −→ R which
determines the value of a constraint. If there is no constraint between vi and vj ,
function Fij will be 0. A cost function takes values of variables as an input and
returns a value as a non-negative number for a given constraint. Utility of agent
i for assignment A is:

Ui(A) =
∑
vj∈V

Fij(ai, aj)

Where vi ← ai, vj ← aj , ai, aj ∈ A (1)

It means the utility of the ith agent is the sum of the cost functions of all the
constraints to which an agent belongs.

The goal is to choose values for variables such that a given objective function
is maximized. The objective function is described as the sum over a set of cost
functions, or valued constraints. As a result, the objective is to maximize:

R(A) =
∑

(vi,vj)∈V

Fij(ai, aj)

Where vi ← ai, vj ← aj , ai, aj ∈ A (2)

R(A) is a solution quality for an assignment A [11, 12].
Figure 1 shows an example of DCOP with 6 variables and 7 constraints

with the same cost function. The optimal assignment for this DCOP is A =
(1, 1, 1, 1, 1, 1).
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Fig. 1. An example DCOP with six binary variables. Each constraint has the same
cost function.

2.2 t-distance Optimality

Definition 1 For two different assignments A and A′ :

D(A,A′) = {vi ∈ V ‖ ai 6= a′i , vi ← ai ∈ A, vi ← a′i ∈ A′} (3)

Put simply, D is a deviating group between two assignments A and A′.

Definition 2 For a pair of variables vi and vj, let T (vi, vj) be the shortest
distance between them in the constraint graph. Let Φt(vi) = {vj‖T (vi, vj) ≤
t, vi, vj ∈ V} denote a set of variables that can be reached from vi within t hops.

Definition 3 A DCOP assignment A is t-distance optimal if R(A) ≥ R(A′)
for all A′, where D(A,A′) ⊆ Φt(vi) for some vi ∈ V [8, 18].

Example: Consider the graph in Figure 2. Given t = 1, 1-distance groups for
all variables will be: Φ1(v1) = {v1, v2, v3}, Φ1(v2) = {v1, v2, v4, v5}, Φ1(v3) =
{v1, v3, v4}, Φ1(v4) = {v2, v3, v4, v5}, Φ1(v5) = {v2, v4, v5}.  
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Fig. 2. An example DCOP with five binary variables. Each constraint has the same
cost function.
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3 Structures of Groups

In a DCOP, the problem is solved by dividing DCOP into groups, and then, all
the agents in a group cooperate to maximize the objective function. In other
words, they create a coalition in groups to maximize the objective function. A
group structure is a partition of the overall set of agents into sub groups. DCOP
division in section 2.2 with t = 1 for the graph in Figure 2, is a possible structure
for this network of agents. The structure of groups by this division is:

GS = {{v1, v2, v3}, {v1, v2, v4, v5}, {v1, v3, v4},
{v2, v3, v4, v5}, {v2, v4, v5}}

Obviously, by using different t for each group, other structures are gained.
Given a network of agents NET = (Ag,F) with a set of agents Ag and a set

of cost functions F , the optimal group structure GS∗ is given in the following
formula:

GS∗ = arg max
GS∈all possible group stuctures

U(GS) (4)

Where

U(GS) = RGS(A∗) (5)

It indicates U(GS) is the reward value for assignment A∗ which is the best
assignment reached by applying an incomplete algorithm for a DCOP.

Finding the best structure is impossible because the number of structures
that can be created in a graph is exponential.

4 DALO Algorithm and Issues

DALO algorithm, as an incomplete algorithm, was introduced by Yin [18]. It is
an asynchronous algorithm for DCOP based on t-distance optimality.

DALO algorithm has three phases. In phase one, each agent sends a message
containing all its constraints to agents in a distance of t hops. Then, it broadcasts
its initial value to a distance of t + 1 hops in a separate message. In phase two,
based on the information gathered in the previous phase, all the leaders compute
a new optimal assignment using a centralized variable elimination algorithm in
parallel. In phase three, if the new assignment improves the utility of a group,
the group leader attempts to set the new assignment. There might be conflicts
among overlapping groups while all leaders try to set their assignments. The
conflicts are resolved by an asynchronous locking and commitment protocol.
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4.1 DALO Issues

Although DALO is an effective algorithm to solve DCOP problems, it suffers
from some drawbacks. In t-distance optimality, the number of optimization
groups is fixed, but the size of t-distance groups can be very large, particularly
in dense graphs [18]. Using distance as a criterion to create groups may produce
groups with large number of nodes; especially, when there are hub nodes with
many connections or subgraphs which are densely connected.

As it is explained in DALO algorithm in phase two, a complete algorithm
is used to solve DCOP. All group leaders compute new optimal assignments for
their groups in parallel. A leader node uses a centralized variable elimination
algorithm to find the best assignment for the local group. Variable elimination
algorithms are complete algorithms with exponential computational complexity
in the number of agents. By increasing t, the number of agents in a group will
increase and using a complete DCOP solver will not be tolerable from size and
space point of view. To solve this problem, instead of using a centralized variable
elimination algorithm, we use a genetic approach in phase two which is discussed
in [14].

One of the significant problems in DALO algorithm and some other incom-
plete algorithms is how to form groups to reach the highest utility. Groups for-
mation has direct influence on the quality of solutions for a given DCOP. Using
some formations, the algorithm cannot improve the quality through increasing
the number of rounds [7]. On the other hand, by changing the group formation
new values may be set and the quality may improve. This problem stems from
the conflicts among groups. The presence of some agents in some groups does
not let a group improve its local solution, since these agents are common agents
among different groups and some of them do not commit to the assignment of
many groups to which they belong.

Changing groups leads to solution variation. Finding the best group forma-
tion, which the best solution could gained from, is very difficult and in some cases
is impossible. With the purpose of finding the best group formation all possible
formation should be considered and after comparing the results the best one is
chosen. As it is clear, it is impossible in networks with large number of agents.

This paper introduces a distributed approach to improve groups formation.
This method works based on the contribution of each agent in the reward of the
group. To shed light on the problem an example is given in the next section.

Example Consider the graph in Figure 3. The cost function for each constraint
is given. Groups are formed using t = 1. Active agents are shown in bold and
passive agents are shown in italic. Here after we use the terms active and passive
agent more. Hence, it is worthwhile to define them here. Active agents are those
that can change their value to the value which leaders send to them. In contrast,
passive agent are those agents in the boundary of group whose values do not
change by the leader of group and their values remain constant during algorithm
execution.
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G0 = {0,2, 1, 3},G1 = {1,2, 0, 3},G2 = {0,1,2,3, 4},G3 = {2,3,4, 0, 1, 5},G4 =
{3,4,5, 2},G5 = {4,5, 3}
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Fig. 3. DCOP examples

All leaders L = {0, 1, 2, 3, 4, 5} compute the best assignment for their group
members by starting from initial value 1 for all agents. Among these leaders,
leader 4 can set its assignment. Since, leader 4 sets its assignment, the other
leaders cannot set their assignments. Therefore, DCOP assignment will be A =
(1, 1, 1, 1, 0, 0). The utility of DCOP will be U(A) = 16.

Agent 3 is the common agent in groups G2, G4 and also is the active agent
in these two groups. In computing the best assignment the value given to agent
3 by leader 2 is 0 but the value given by leader 4 to the same agent is 1. Based
on the rule in DALO algorithm, an agent is committed to the group which has
the highest utility. Hence, based on cost functions in Figure 3, agent 3 chooses
the value given by leader 4.

Among groups G0,G1,G2, without considering other groups of graph, group
G2 can set its assignment, but other groups cannot because all the common
agents in these groups commit to the values given by leader 2. On the other
side, due to the presence of agent 3 which commits to the value of leader 4,
leader 2 cannot set its assignment. Consequently, the presence of agent 3 makes
groups assignment stay unchanged. It is needless to say quality does not enhance
as result of this presence.

According to the description above among all groups, group G4 changes its
assignment and all other groups stay in their initial values. Consider agent 3 is
removed from group G2. This change having been incorporated, group G2 and
group G4 set their assignments simultaneously which leads to utility enhance-
ment.

This example clarifies the main problem in algorithms that use a fix group
formation in which the utility of the solution does not increases without chang-
ing group formation. Worded differently, it shows that the presence of some
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active/passive agents creates problems in setting new assignments and adding
or removing them to or from some groups solves the problem.

For the above reasons, we focus on the impact of each agent in each group.
We use a novel algorithm which tries to estimate the impact of agents in groups.
This algorithm is an efficient and distributed method to change groups dynam-
ically. The algorithm considers the impact of active agents in a group as well
as passive agents. Moreover, each group leader keeps only the local group infor-
mation to run the algorithm which makes the communication bandwidth and
storage requirement low.

5 Embedding Group Optimization in Solution Procedure

The solution procedure starts from a random initial assignment and monotoni-
cally improves the solution quality. To have our discussion simple we divide the
procedure into four phases: initialization, groups optimization, computing the
best assignment and implementing assignments.

– Initialization: At first, every agent sends a message containing all its con-
straints to all agents in distance of t hops from it. Then, it chooses an initial
value from its domain and broadcasts it to agents in distance of t + 1 hops.
In this phase, a leader starts to construct its group. Given t, all agents whose
distance of center node are lower than t will be a member of the group. The
additional hop in sending a message is for boundary nodes. The nodes in the
boundary of a group are considered static in computing the best assignment.

– Groups optimization: In phase two, some leaders are selected and op-
timize their groups to facilitate the achievement of a better solution for a
DCOP problem. Detailed description of optimization algorithm is given in
section 5.1.

– Computing the best assignment: In this phase, all the leaders compute
a new optimal assignment using a centralized variable elimination algorithm
in parallel. A leader agent finds a new value for active agents in a group
considering the fact that passive agents stay unchanged.

– Implementing assignments: Each agent belongs to different groups and
receives various assignments from different leaders, and lastly every agent
commits to a group with the highest utility. To resolve the conflict among
overlapping groups, a method is used for resolving conflict described in
DALO algorithm [18].

Phase one is done just once. Since the computation complexity of phase two
is high, this phase is executed after each m rounds. The value of parameter m
depends on the size of graph and is specified through experiment. Optimizing
group is our main contribution in this paper and so we provide our deep discus-
sion about this issue in the next subsection. Phase three and four are executed in
each round in all groups in parallel. The algorithm stops running if it converges
to a value.
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5.1 Optimizing Groups

As it is mentioned before, we try to find a group formation by which solutions
with higher quality are gained. To this end, a leader tries to change its group
by adding /removing some agents to/from its group. When a leader decides to
add a passive agent to the group, it changes it to an active one. In contrast, to
remove an agent a leader makes an active agent passive.

How to add or remove agents is the major problem. A criterion should be
introduced to use in adding or removing the agents. We utilize a marginal con-
tribution concept to change groups.

Definition 4 Let µi(G) be the marginal contribution of Agenti to the group G
which is computed by adding or removing it from G.

µi(G) = R(A′)−R(A) (6)

A′ is the best assignment of group G ⊆ all agent ∪ Agenti and A is the best
assignment of group G ⊆ all agent\Agenti.

We use this concept in group formation. In each group of a DCOP, utility
of a group before and after removing (adding) an agent is computed and if the
absence (presence) of an agent increases the local utility, we try to change the
group by removing (adding) an agent.

There are three main issues in groups optimization. The first one is that
the decision about any changes cannot be made through group information and
decision about the change should be made using the information of the whole
DCOP, but we do not have the global information of the graph in each group. The
second issue is about the method of group alternation as adding and removing an
agent causes some other agents to join or leave the group. Changing all groups is
not efficient which forces us to choose some leaders to change their groups. This
is the source for the third issue. All these problems and our proposed solutions
are discussed in the following sections in more detail. From now on, we call the
group which we try to change the target group.

Local View of the Leader Agent Changing a group has an effect on the whole
DCOP, because by removing (adding) agents the assignment for the members
changes. As a matter of fact, the new assignment of this group has direct influence
on other groups. The new values may or may not enable some other groups set
their assignments. For that reason, a leader agent should be aware of the status
of other groups and whether or not they set their new assignment through the
new change. A group leader can firmly claim that the change has positive effect
if it has global information about the graph. It is obvious that the leader does
not have such information.

Based on the description above, due to the connections among groups and
propagation of the change in the whole DCOP, to get the best decision, a leader
agent should be informed of their adjacent leaders and decide what happens in
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the whole DCOP after the new change. But as we know, it is impossible to solve
a problem distributively.

We solve the problem by creating a local view for each leader. The local view
of the leader of target group is a subgraph consists of the target group and all
its adjacent groups. In the process of decision making about the new change in
the target group, the leader uses local view. There is no need to know all the
members of the adjacent groups. Because the leader of the target group should
only be in contact with the leaders of the adjacent groups. Finding the leader of
any of adjacent groups is very easy because these leaders are the active agents
of the target group.

When a leader changes its group, it computes a new assignment for the new
group and sends the new values to all group members. All agents in this group
receive new assignment and decide about commitment to the group again. Then,
all the groups in the local view of the leader of the target group use the new
assignment and decide about implementation of their assignments. Adjacent
groups do not compute new assignments and they just receive a message from
agents which commit to other groups. The leader of the target group sends a
message to its adjacent leaders to be aware of the utility of the adjacent groups.
All adjacent leaders send back their utilities to the central leader.

Add/Remove Agents of a Group A leader has information about its mem-
bers including active and passive agents. Because of the limited information of
the leader node, the agent we try to add to the group should be chosen from
passive agents of the target group. All agents with direct link to the added agent
and not belonging to the group will be considered as passive agents of the new
group.

In removing an agent from a group, we choose an active agent and make it
a passive one, but all passive agents which are connected to the removed agent
should be removed from the group as well. We cannot remove all of these agents
because there are some agents among these agents which are connected to the
group via other active agents. Therefore, in removing an agent from a group,
agents connected to a group just by the removed agent will be removed and all
other agents will remain by means of other active agents in the group.

Choosing Groups to be Optimized One of the main issues in this new
approach is to choose groups to be optimized. We can apply the new approach to
all groups, but it has some problems. The first is that using the new approach in
solving a DCOP, the computational cost increases and consequently optimizing
all groups is not tolerable from computational point of view. The second problem
is related to coordinating the decision of all leaders in changing their groups.
Since leaders do not have global information of a DCOP, their decision about
the changes in their groups may have conflicts and optimizing all groups will be
useless.
In line with aforementioned description, some leaders should be chosen to op-
timize their groups. Choosing groups optimizing of which provides us with the
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best result is impossible. We use a simple and cost effective method to select
groups. This approach is derived from a partial approach introduced in [6]. Us-
ing this approach all leaders should try to change their groups, at least once,
during algorithm execution. As a matter of fact, the changes in a group forma-
tion influences the whole DCOP and increases the computational cost. Hence,
optimizing groups is done after each m rounds.

Consider there are n agents in a network. Consequently, there are n groups in
a network. We define the index set L = {1, 2, . . . , n}. The index set L is divided
into h subsets S = {S1, . . . , Sh}. Each subset contains leaders ID which should
optimize its groups. After each m rounds, a subset, Si, is selected and leaders in
this subset try to optimize their groups. The main problem is to assign leaders
to subsets. Finding the best division is not computable within limited time.

We use a simple approach called sequential approach. In sequential approach,
in the first round, S1 is selected, in round m subset S2, and in round mh subset
Sh is selected; in round m(h+1), subset S1 is selected again. So, after mh rounds,
all subsets will be selected only once.

To specify groups to be optimized, we use a simple rule. In round r, a leader
with ID ` checks if:

` % h = r % h , where r % m = 0 (7)

Then, this leader tries to optimize its group. The number of groups which
should be optimized and the rounds in which we optimize groups are found
through experiment. There is no specific rule to do so.

6 DGOPT Algorithm

In this section, we explain DGOPT in more detail. As it is obvious DGOPT adds
a new step to DALO. For the sake of simplicity we just emphasize on the new
step when we refer to DGOPT. We divide the algorithm into 3 steps to have more
concentration on our explanation. This algorithm is applied to groups which are
selected based on descriptions in the previous section. The following algorithm
represents the process of removing an agent. The process of adding is much the
same way.

– Local information gathering: At first, the leader node finds its adjacent
leaders which are the active agents of its group. The leader of target group
stores the utility of its adjacent groups which are computed before optimizing
its group. Since the leaders in the local view are the active agents of the
target groups, obtaining information about their groups is not very time-
consuming. Next few lines yield the justification of why this process is not
time-consuming. To commit to the new assignment, some messages pass
among leader and its active agents. We can include the utility of adjacent
groups in the messages by which active agents inform the leader whether or
not they have committed to the new assignment. Therefore, there is no need
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to send and receive more messages and we can include the information for
decision making in messages which are exchanged among leader and active
agents to set the new assignment. Based on this information, we sum up the
utility of the target group and the groups in its local view in line 6 to have
the utility of groups in local view before changing the target group.

Algorithm 1
(∗ Remove an Agent From a Group ∗)
1. Target group G;
2. Create Local view();
3. Local Information Gathering();
4. R1 = 0;
5. for i← 1 to Number of Groups in Local View
6. do R1=R1+utility(group(i));
7. for i← 1 to some randomly chosen active agents
8. do R2 = 0;
9. Temporary Remove Agent(agent(i));
10. Compute Utility(G);
11. for j ← 1 to Number of Groups in Local View
12. do R2=R2+utility(group(j));
13. if (R2 −R1) > 0
14. then Remove Agent Permanently();
15. return G;

– Changing group temporarily and computing the new assignment:
The leader removes an active agent temporarily. The leader agent makes the
active agent a passive one and removes all agents connected to the group
by this agent. If the agent is connected to the group by other active agents,
we do not remove it. After removing an agent, the leader node re-computes
the best assignment in the new group. All leaders of adjacent groups just
decide about the implementation of their assignments by the new change
and they send the utility of their groups to the leader of the target group.
We emphasize that by the above justification the adjacent leaders are not
in need of sending new messages to inform the leader of the target group
of their utilities. The leader agent sums up its new utility and its adjacent
leaders’ utilities again in line 12.

– Computing marginal contribution: In this step, marginal contribution
of the removed agent is computed. The positive marginal contribution of the
removed agent shows that the new formation increases the utility, but if the
marginal contribution is negative, the change is not promising. If the change
is promising the group is changed permanently in line 14.

The first phase is executed just once. The other phases are repeated for all
selected active agents.
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7 Experimental Results

In this section we put forward some experimentations to show the efficiency of
our DGOPT algorithm. We setup our experiments on some graphs with different
densities and the same size. Before presenting our results we introduce our three
evaluation metrics which the algorithms are compared based on them, namely,
quality of solution, number of rounds and (Gain,#Locked Variables).

– Quality of Solution: The primary aim of this paper is to construct groups
to reach the solution with higher quality. The quality of solution is computed
according to equation 2. Based on this definition, a solution with higher
reward is more qualified [5, 7, 12].

– Number of Rounds: A round is one unit of algorithm progress in which all
agents perform any required computation. After some rounds, the solution
reached by algorithm does not change. In this case, the algorithm converges
to the best possible solution. In the evaluation, we consider the number of
rounds required to converge. This metric is a convenient, standardized metric
for estimating the performance of a DCOP algorithm [5].

– (Gain,#Locked Variables): Versus to above mentioned metrics which are
used to evaluate the performance of DCOP algorithms in the whole DCOP,
tuple (Gain,#Locked V ariables) analyzes the performance of the algorithm
on local groups. The gain is the quality of group and the #Locked V ariables
is the number of variables that are locked to set the new assignment.

7.1 Results

The result that we are reporting is based on some random graphs with four
different densities D = {0.2, 0.4, , 0.6, 0.8}. All graphs used in our experiment
have the size 50 with different densities and structures. Variables have a binary
domain and rewards are integers drawn from [1, 500]. In the experiment we
generated 20 random graphs with different structures while kept the size and
density the same. The solution quality shown in the following figures are the
average quality that gained from these graphs.

Both algorithms start from a same random initial assignment. The stopping
criterion is also defined in a same for both algorithms. The algorithm stops
running whenever all groups do not tend to change their assignments because
there is no new assignment to increase the utility of groups.

We set parameter t to 2, h to 3, and m to 5 respectively. Determination of the
exact values of h and m is made just by experiment and we set the parameters
to the values which have the more desirable results. More discussion related to
determination of h and m can be found in [6].

In our first experiment we compare the solution quality of our DGOPT algo-
rithm and DALO. Obviously, algorithm that achieves a final solution of higher
quality in a lower number of rounds is more desirable. Figures 4 through 7
show that the solution quality increases by DGOPT algorithm in comparison
with DALO. For instance in Figure 4 the final solution quality for graphs with
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Fig. 4. Solution quality: DGOPT vs DALO for graphs with density 0.2

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 100 110 120 130 140 150 160 170

S
o

lu
ti

o
n

 Q
u

a
li

ty
 

Number Of Rounds

DALO

DGOPT

 

Fig. 5. Solution quality: DGOPT vs DALO for graphs with density 0.4

D = 0.2 using DALO is 65, but using DGOPT the quality in the same graphs
is 82. Moreover, after group alteration through DGOPT, there will be a boost
in the solution quality; these increases end in the algorithm convergence to a
higher solution quality in lower number of rounds in comparison with DALO.
As an example, consider the diagrams in Figure 6, DGOPT converges after 150
rounds and DALO converges after 195 rounds.

The results also show that the DGOPT algorithm is even more efficient on
dense graphs. For example, the maximum difference in solution quality for graphs
with D = 0.2 is almost 30, but the maximum difference for graphs with D = 0.4
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Fig. 6. Solution quality: DGOPT vs DALO for graphs with density 0.6
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Fig. 7. Solution quality: DGOPT vs DALO for graphs with density 0.8

is almost 300. It is clear that the groups in dense graphs have more number of
agents in comparison with sparse graphs. Accordingly the overlap among groups
increases and there will be more number of agents which are common among
groups. In this case, there will be more number of agents which do not allow
a leader to set its assignment by committing to other groups. Overally, the
results in our experiment show that the quality of solution increases 43% and
the number of round decreases 21%, on average. It can be concluded that using
DGOPT algorithm, solutions with higher quality are gained in a lower number
of rounds.
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Fig. 8. (Gain,#Locked Variables) for DALO
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Fig. 9. (Gain,#Locked Variables) DGOPT

To further understand and compare the performance of DGOPT and DALO,
we provide an analysis on local group changes. In each group, the leader locks
some of the variables and if all group members commit to the new assignment,
it will be set. By setting the new assignment, the utility of group, which we call
it gain, will change. The (Gain, #Locked V ariables) pair is used as a metric to
compare DCOP algorithms in [18]. It is a proper metric to compare the effect
of different group formations in solving DCOPs. The more the number of locks,
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the more the number of conflicts. Hence, groups with lower number of locks and
larger gain are more preferred.

To compare the algorithms, we depict the result for graphs with size 50 and
density 0.4. As it is declared in Figure 8 DALO never achieves a gain larger
than 500 and barely locks more than 20 variables. On the other hand, DGOPT
achieves gain 800 by locking more number of variables. For example as it is
specified in the Figures 8, 9 by locking 20 variables DALO achieves gain 500
while DGOPT can achieve gain 850.

In Figure 8, the congestion is on the value 18 which indicates that most of
groups locked 18 variables. On the contrary, as it is depicted in Figure 9, the
congestion is on the value 23. The difference in the number of locked variables
is not very much, but the quality improvement is considerable. Hence, by slight
increase in the number of variables better solutions are gained. Our experimen-
tations show hat DGOPT outperforms DALO both in term of solution quality
and the number of rounds that this quality is achieved.

8 Conclusion

As it is explained in this paper some group formations are not very efficient to
solve DCOP problems and lead to solution with lower quality. In this paper,
we proposed a distributed dynamic algorithm to optimize groups in a DCOP.
The purpose of this algorithm is to find better group formations to reach higher
solution quality. This algorithm achieves solutions with higher quality in low
number of rounds. Moreover, by slight increase in the number of locked variables
in groups, solution quality increases considerably. The proposed algorithm can
be applied to other incomplete DCOPs by slight modification. We are planning
to extend the algorithm by using agents previous interactions to improve groups.
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